Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ...Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.展开更多
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the...Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively.展开更多
To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail ...To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations.展开更多
To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achiev...To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achieves high-quality AFM imaging via line-by-line corrections for each distorted profile along the fast axis.The key to this line-by-line correction is to accurately simulate the profile distortion of each scanning row.Therefore,a data preprocessing approach is first developed to roughly filter out most of the height data that impairs the accuracy of distortion modeling.This process is implemented through an internal double-screening mechanism.A line-fitting method is adopted to preliminarily screen out the obvious specimens.Lifting wavelet analysis is then carried out to identify the base parts that are mistakenly filtered out as specimens so as to preserve most of the base profiles and provide a good basis for further distortion modeling.Next,an iterative thresholding algorithm is developed to precisely simulate the profile distortion.By utilizing the roughly screened base profile,the optimal threshold,which is used to screen out the pure bases suitable for distortion modeling,is determined through iteration with a specified error rule.On this basis,the profile distortion is accurately modeled through line fitting on the finely screened base data,and the correction is implemented by subtracting the modeling result from the distorted profile.Finally,the effectiveness of the proposed method is verified through experiments and applications.展开更多
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared wi...In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.展开更多
An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for...An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.展开更多
It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used suc...It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.展开更多
In this paper we use the auxiliary principle technique to suggest and analyze novel and innovative iterative algorithms for a class of nonlinear variational inequalities. Several special cases, which can be obtained f...In this paper we use the auxiliary principle technique to suggest and analyze novel and innovative iterative algorithms for a class of nonlinear variational inequalities. Several special cases, which can be obtained from our main results, are also discussed.展开更多
A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems...A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings展开更多
An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.展开更多
The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob...The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.展开更多
In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite...In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material.展开更多
The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineeri...The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineering. Combining the integration character of one-phase regressive filter with the iterative formula of inverse matrix,an STMV iterative algorithm is proposed. The computational cost of the iterative algorithm is reduced approximately to be 2/M times of the original one when there are M sensors,and is more advantaged for the realization of the algorithm in real time. Simulation results show that the STMV iterative algorithm can preserve the characters of STMV on high azimuth resolution and weak target detection while the computational cost reduced sharply. The analysis on sea trial data proves that the proposed algorithm can estimate each target's azimuth even when the source powers differ in large scales or their bearings are very approximate.展开更多
Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A no...Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A novel class of correctors based on feedback-accelerated Picard iteration(FAPI)is proposed to further enhance computational performance.With optimal feedback terms that do not require inversion of matrices,significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts;however,the computational complexities are comparably low.These advantages enable nonlinear engineering problems to be solved quickly and accurately,even with rough initial guesses from elementary predictors.The proposed method offers flexibility,enabling the use of the generated correctors for either bulk processing of collocation nodes in a domain or successive corrections of a single node in a finite difference approach.In our method,the functional formulas of FAPI are discretized into numerical forms using the collocation approach.These collocated iteration formulas can directly solve nonlinear problems,but they may require significant computational resources because of the manipulation of high-dimensionalmatrices.To address this,the collocated iteration formulas are further converted into finite difference forms,enabling the design of lightweight predictor-corrector algorithms for real-time computation.The generality of the proposed method is illustrated by deriving new correctors for three commonly employed finite-difference approaches:the modified Euler approach,the Adams-Bashforth-Moulton approach,and the implicit Runge-Kutta approach.Subsequently,the updated approaches are tested in solving strongly nonlinear problems,including the Matthieu equation,the Duffing equation,and the low-earth-orbit tracking problem.The numerical findings confirm the computational accuracy and efficiency of the derived predictor-corrector algorithms.展开更多
Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design...Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm.展开更多
A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is ...A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFA1005000)the National Natural Science Foundation of China(Grant No.62025110 and 62101308).
文摘Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
基金supported by the Natural Science Foundation of China (U22A20214)。
文摘Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively.
基金Project(2023ZDZX0008)supported by the Sichuan Major Science and Technology Project,ChinaProject(52308468)supported by the National Natural Science Foundation of ChinaProject(2022JBQY009)supported by the Fundamental Research Funds for the Central Universities(Science and Technology Leading Talent Team Project),China。
文摘To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations.
基金supported by the National Natural Science Foundation of China under Grant No.21933006.
文摘To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achieves high-quality AFM imaging via line-by-line corrections for each distorted profile along the fast axis.The key to this line-by-line correction is to accurately simulate the profile distortion of each scanning row.Therefore,a data preprocessing approach is first developed to roughly filter out most of the height data that impairs the accuracy of distortion modeling.This process is implemented through an internal double-screening mechanism.A line-fitting method is adopted to preliminarily screen out the obvious specimens.Lifting wavelet analysis is then carried out to identify the base parts that are mistakenly filtered out as specimens so as to preserve most of the base profiles and provide a good basis for further distortion modeling.Next,an iterative thresholding algorithm is developed to precisely simulate the profile distortion.By utilizing the roughly screened base profile,the optimal threshold,which is used to screen out the pure bases suitable for distortion modeling,is determined through iteration with a specified error rule.On this basis,the profile distortion is accurately modeled through line fitting on the finely screened base data,and the correction is implemented by subtracting the modeling result from the distorted profile.Finally,the effectiveness of the proposed method is verified through experiments and applications.
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074), and the Special Funds for Major Specialities of Shanghai Education Commission (Grant No.J50101)
文摘In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.
基金Project supported by the National Natural Science Foundation of China (No.10472061)
文摘An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.
文摘It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.
文摘In this paper we use the auxiliary principle technique to suggest and analyze novel and innovative iterative algorithms for a class of nonlinear variational inequalities. Several special cases, which can be obtained from our main results, are also discussed.
基金Project supported by the Natural Science Foundation of Sichuan Educational Commission (No.2003A081)
文摘A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (62173333, 12271522)Beijing Natural Science Foundation (Z210002)the Research Fund of Renmin University of China (2021030187)。
文摘For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.
基金supported in part by the National Natural Science Foundation of China(61627811,61573274,61673126,U1701261)
文摘The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.
基金Supported by Hebei Provincial Natural Science Foundation of in China(Grant Nos.E2015203244,E2016203266)Program for the Youth Top-notch Talents of Hebei Province
文摘In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material.
文摘The steered covariance matrix(STCM) and its inverse matrix should be calculated in each beam for steered minimum variance(STMV) . The inverse matrix needs complex computation and restricts its application in engineering. Combining the integration character of one-phase regressive filter with the iterative formula of inverse matrix,an STMV iterative algorithm is proposed. The computational cost of the iterative algorithm is reduced approximately to be 2/M times of the original one when there are M sensors,and is more advantaged for the realization of the algorithm in real time. Simulation results show that the STMV iterative algorithm can preserve the characters of STMV on high azimuth resolution and weak target detection while the computational cost reduced sharply. The analysis on sea trial data proves that the proposed algorithm can estimate each target's azimuth even when the source powers differ in large scales or their bearings are very approximate.
基金work is supported by the Fundamental Research Funds for the Central Universities(No.3102019HTQD014)of Northwestern Polytechnical UniversityFunding of National Key Laboratory of Astronautical Flight DynamicsYoung Talent Support Project of Shaanxi State.
文摘Although predictor-corrector methods have been extensively applied,they might not meet the requirements of practical applications and engineering tasks,particularly when high accuracy and efficiency are necessary.A novel class of correctors based on feedback-accelerated Picard iteration(FAPI)is proposed to further enhance computational performance.With optimal feedback terms that do not require inversion of matrices,significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts;however,the computational complexities are comparably low.These advantages enable nonlinear engineering problems to be solved quickly and accurately,even with rough initial guesses from elementary predictors.The proposed method offers flexibility,enabling the use of the generated correctors for either bulk processing of collocation nodes in a domain or successive corrections of a single node in a finite difference approach.In our method,the functional formulas of FAPI are discretized into numerical forms using the collocation approach.These collocated iteration formulas can directly solve nonlinear problems,but they may require significant computational resources because of the manipulation of high-dimensionalmatrices.To address this,the collocated iteration formulas are further converted into finite difference forms,enabling the design of lightweight predictor-corrector algorithms for real-time computation.The generality of the proposed method is illustrated by deriving new correctors for three commonly employed finite-difference approaches:the modified Euler approach,the Adams-Bashforth-Moulton approach,and the implicit Runge-Kutta approach.Subsequently,the updated approaches are tested in solving strongly nonlinear problems,including the Matthieu equation,the Duffing equation,and the low-earth-orbit tracking problem.The numerical findings confirm the computational accuracy and efficiency of the derived predictor-corrector algorithms.
基金Project supported by the National Natural Science Foundation of China(No.61603322)the Research Foundation of Education Bureau of Hunan Province of China(No.16C1542)
文摘Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm.
基金supported by the National Outstanding Young Scientists Fund of China (No. 10725209)the National ScienceFoundation of China (No. 10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project (No. 07ZZ07)Shanghai Leading Academic Discipline Project (No. Y0103).
文摘A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.