期刊文献+
共找到282,910篇文章
< 1 2 250 >
每页显示 20 50 100
AN INFEASIBLE-INTERIOR-POINT PREDICTOR-CORRECTOR ALGORITHM FOR THE SECOND-ORDER CONE PROGRAM 被引量:11
1
作者 迟晓妮 刘三阳 《Acta Mathematica Scientia》 SCIE CSCD 2008年第3期551-559,共9页
A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorith... A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP. 展开更多
关键词 Second-order cone programming infeasible-interior-point algorithm predictor-corrector algorithm global convergence
在线阅读 下载PDF
Two new predictor-corrector algorithms for second-order cone programming 被引量:1
2
作者 曾友芳 白延琴 +1 位作者 简金宝 唐春明 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期521-532,共12页
Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algor... Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective. 展开更多
关键词 second-order cone programming infeasible interior-point algorithm predictor-corrector algorithm global convergence complexity analysis
在线阅读 下载PDF
New Mehrotra's second order predictor-corrector algorithm for P_*(κ) linear complementarity problems
3
作者 Mingwang Zhang Yanli Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期705-712,共8页
It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of t... It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization. 展开更多
关键词 linear complementarity problem P_*(κ)-matrix Mehrotra-type predictor-corrector algorithm polynomial complexity.
在线阅读 下载PDF
PREDICTOR-CORRECTOR ALGORITHMS FOR SOLVING GENERALIZED MIXED IMPLICIT QUASI-EQUILIBRIUM PROBLEMS
4
作者 丁协平 林炎诚 姚任之 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第9期1157-1164,共8页
A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems... A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings 展开更多
关键词 generalized mixed implicit quasi-equilibrium problem auxiliary variational inequality predictor-corrector iterative algorithms partially relaxed implicit strong monotonicity
在线阅读 下载PDF
A New Second-Order Mehrotra-Type Predictor-Corrector Algorithm for SDO
5
作者 HUANG Fangyan ZHANG Mingwang HUANG Zhengwei 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第2期99-109,共11页
In Zhang’s recent works,a second-order Mehrotra-type predictor-corrector algorithm for linear optimization was extended to semidefinite optimization and derived that the algorithm for semidefinite optimization had3/2... In Zhang’s recent works,a second-order Mehrotra-type predictor-corrector algorithm for linear optimization was extended to semidefinite optimization and derived that the algorithm for semidefinite optimization had3/2 0 T 0O(nlog(X)gS/e)iteration complexity based on the NT direction as Newton search direction.In this paper,we extend the second-order Mehrotra-type predictor-corrector algorithm for linear optimization to semidefinite optimization and discuss the polynomial convergence of the algorithm by modifying the corrector direction and new iterates.It is proved that the iteration complexity is reduced to0 0O(nlog XgS/e),which coincides with the currently best iteration bound of Mehrotra-type predictor-corrector algorithm for semidefinite optimization. 展开更多
关键词 Mehrotra-type algorithm predictor-corrector methods semidefinite optimization
原文传递
Polynomial Complexity Bounds of Mehrotra-type Predictor-corrector Algorithms for Linear Programming over Symmetric Cones
6
作者 刘长河 尚有林 李振国 《Chinese Quarterly Journal of Mathematics》 2015年第4期475-494,共20页
We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the s... We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples. 展开更多
关键词 linear programming symmetric cone Euclidean Jordan algebra interior-point methods Mehrotra-type algorithm polynomial complexity
在线阅读 下载PDF
A Mehrotra-Type Predictor-Corrector Algorithm for P_*(κ) Linear Complementarity Problems
7
作者 Weihua LI Mingwang ZHANG Yiyuan ZHOU 《Journal of Mathematical Research with Applications》 CSCD 2012年第3期297-312,共16页
Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear op... Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm. 展开更多
关键词 P*(k) linear complementarity problems Mehrotra-type predictor-corrector algo- rithm polynomial iteration complexity interior point method.
原文传递
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
8
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
9
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
10
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
11
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
12
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
A SECOND ORDER MEHROTRA-TYPE PREDICTOR-CORRECTOR ALGORITHM FOR SEMIDEFINITE OPTIMIZATION 被引量:4
13
作者 Mingwang ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第6期1108-1121,共14页
Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-cor... Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-corrector algorithm that was proposed by Salahi, et a1.(2006) for linear optimization. Basedon the NT direction as Newton search direction, it is shown that the iteration-complexity bound of thealgorithm for semidefinite optimization is which is similar to that of the correspondingalgorithm for linear optimization. 展开更多
关键词 Mehrotra-Type algorithm polynomial complexity predictor-corrector algorithm semidef-inite optimization.
原文传递
PREDICTOR-CORRECTOR ALGORITHM FOR CONVEX QUADRATIC PROGRAMMING WITH UPPER BOUNDS
14
作者 GUO, TD WU, SQ 《Journal of Computational Mathematics》 SCIE CSCD 1995年第2期161-171,共11页
Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. ... Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. First, we modify the algorithm in order to solve convex quadratic programming with upper bounds. Second, we replace the corrector step with an iteration of Monteiro and Adler's algorithm([2]). With these modifications, the duality gap is reduced by a constant factor after each corrector step for convex quadratic programming. It is shown that the new algorithm has a O(root nL)-iteration complexity. 展开更多
关键词 EN QP predictor-corrector algorithm FOR CONVEX QUADRATIC PROGRAMMING WITH UPPER BOUNDS
原文传递
AN EXTENSION OF PREDICTOR-CORRECTOR ALGORITHM TO A CLASS OF CONVEX SEPARABLE PROGRAM
15
作者 郭田德 吴士泉 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1997年第4期362-370,共6页
redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex sep... redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex separable programming problems. 展开更多
关键词 Convex separable programming problem predictor-corrector algorithm interior point algorithm PATH-FOLLOWING
全文增补中
A POLYNOMIAL PREDICTOR-CORRECTOR INTERIOR-POINT ALGORITHM FOR CONVEX QUADRATIC PROGRAMMING 被引量:4
16
作者 余谦 黄崇超 江燕 《Acta Mathematica Scientia》 SCIE CSCD 2006年第2期265-270,共6页
This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one c... This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one corrector step after each predictor step, where Step 2 is a predictor step and Step 4 is a corrector step in the algorithm. In the algorithm, the predictor step decreases the dual gap as much as possible in a wider neighborhood of the central path and the corrector step draws iteration points back to a narrower neighborhood and make a reduction for the dual gap. It is shown that the algorithm has O(√nL) iteration complexity which is the best result for convex quadratic programming so far. 展开更多
关键词 Convex quadratic programming predictor-corrector interior-point algorithm
在线阅读 下载PDF
A PREDICTOR-CORRECTOR INTERIOR-POINT ALGORITHM FOR CONVEX QUADRATIC PROGRAMMING
17
作者 Liang Ximing(梁昔明) +1 位作者 Qian Jixin(钱积新) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第1期52-62,共11页
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off betwee... The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made. 展开更多
关键词 CONVEX QUADRATIC programming INTERIOR-POINT methods predictor-corrector algorithms NUMERICAL experiments.
在线阅读 下载PDF
A predictor-corrector interior-point algorithmfor monotone variational inequality problems 被引量:2
18
作者 梁昔明 钱积新 《Journal of Zhejiang University Science》 CSCD 2002年第3期321-325,共5页
Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work t... Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work the authors give a predictor corrector interior point algorithm for monotone variational inequality problems. The algorithm was proved to be equivalent to a level 1 perturbed composite Newton method. Computations in the algorithm do not require the initial iteration to be feasible. Numerical results of experiments are presented. 展开更多
关键词 Variational inequality problems(VIP) Predictor corrector interior point algorithm Numerical experiments
在线阅读 下载PDF
Predictor-corrector interior-point algorithm for linearly constrained convex programming
19
作者 LIANG Xi-ming (College of Information Science & Engineering, Central South University, Changsh a 410083, China) 《Journal of Central South University》 SCIE EI CAS 2001年第3期208-212,共5页
Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In ... Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In the p aper a predictor-corrector interior-point algorithm for linearly constrained c onvex programming under the predictor-corrector motivation was proposed. In eac h iteration, the algorithm first performs a predictor-step to reduce the dualit y gap and then a corrector-step to keep the points close to the central traject ory. Computations in the algorithm only require that the initial iterate be nonn egative while feasibility or strict feasibility is not required. It is proved th at the algorithm is equivalent to a level-1 perturbed composite Newton method. Numerical experiments on twenty-six standard test problems are made. The result s show that the proposed algorithm is stable and robust. 展开更多
关键词 linearly constrained convex programming PREDICTOR corrector interior point algorithm numerical experiment
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
20
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部