The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ...The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.展开更多
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ...A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.展开更多
A finite volume element predictor-corrector method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L^2 error estimate for the finite volume element predictor-corrector meth...A finite volume element predictor-corrector method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L^2 error estimate for the finite volume element predictor-corrector method is derived. A numerical experiment shows that the numerical results are consistent with theoretical analysis.展开更多
In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods ...In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.展开更多
In Zhang’s recent works,a second-order Mehrotra-type predictor-corrector algorithm for linear optimization was extended to semidefinite optimization and derived that the algorithm for semidefinite optimization had3/2...In Zhang’s recent works,a second-order Mehrotra-type predictor-corrector algorithm for linear optimization was extended to semidefinite optimization and derived that the algorithm for semidefinite optimization had3/2 0 T 0O(nlog(X)gS/e)iteration complexity based on the NT direction as Newton search direction.In this paper,we extend the second-order Mehrotra-type predictor-corrector algorithm for linear optimization to semidefinite optimization and discuss the polynomial convergence of the algorithm by modifying the corrector direction and new iterates.It is proved that the iteration complexity is reduced to0 0O(nlog XgS/e),which coincides with the currently best iteration bound of Mehrotra-type predictor-corrector algorithm for semidefinite optimization.展开更多
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off betwee...The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.展开更多
Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear op...Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm.展开更多
Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. He...Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid.展开更多
This paper proposes a continuous block method for the solution of second order ordinary differential equation. Collocation and interpolation of the power series approximate solution are adopted to derive a continuous ...This paper proposes a continuous block method for the solution of second order ordinary differential equation. Collocation and interpolation of the power series approximate solution are adopted to derive a continuous implicit linear multistep method. Continuous block method is used to derive the independent solution which is evaluated at selected grid points to generate the discrete block method. The order, consistency, zero stability and stability region are investigated. The new method was found to compare favourably with the existing methods in term of accuracy.展开更多
The paper introduces a new class of numerical schemes for the approximate solutions of stochastic pantograph equations. As an effective technique to implement implicit stochastic methods, strong predictor-corrector me...The paper introduces a new class of numerical schemes for the approximate solutions of stochastic pantograph equations. As an effective technique to implement implicit stochastic methods, strong predictor-corrector methods (PCMs) are designed to handle scenario simulation of solutions of stochastic pantograph equations. It is proved that the PCMs are strong convergent with order 1/2.Linear M^-stabiiity of stochastic pantograph equationsand the PCMs are researched in the paper. Sufficient conditions of MS-unstability of stochastic pantograph equations and MS-stability of the PCMs are obtained, respectively. Numerical experiments demonstrate these theoretical results.展开更多
We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition.A finite difference method with a predictor-corrector method is applied to solve t...We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition.A finite difference method with a predictor-corrector method is applied to solve the nonlinear potential flow equations in a two-dimensional (2D) tank.The irregular tank is mapped onto a fixed square domain with rectangular cells through a proper mapping function.A staggered mesh system is adopted in a 2D tank to capture the wave elevation of the transient fluid.The finite difference method with a predictor-corrector scheme is applied to discretize the nonlinear dynamic boundary condition and nonlinear kinematic boundary condition.We present the numerical results of wave elevations from small to large amplitude waves with free oscillation motion,and the numerical solutions of wave elevation with horizontal excited motion.The beating period and the nonlinear phenomenon are very clear.The numerical solutions agree well with the analytical solutions and previously published results.展开更多
A fractional-step method of predictor-corrector difference-pseudospectrum with unconditional L2-stability and exponential convergence is presented. The stability and convergence of this method is strictly proved mathe...A fractional-step method of predictor-corrector difference-pseudospectrum with unconditional L2-stability and exponential convergence is presented. The stability and convergence of this method is strictly proved mathematically for a nonlinear convection-dominated flow. The error estimation is given and the superiority of this method is verified by numerical test.展开更多
In this paper, we analyze the global and local convergence properties of two predictor-corrector smoothing methods, which are based on the framework of the method in [1], for monotone linear complementarity problems (...In this paper, we analyze the global and local convergence properties of two predictor-corrector smoothing methods, which are based on the framework of the method in [1], for monotone linear complementarity problems (LCPs). The difference between the algorithm in [1] and our algorithms is that the neighborhood of smoothing central path in our paper is different to that in [1]. In addition, the difference between Algorithm 2.1 and the algorithm in [1] exists in the calculation of the predictor step. Comparing with the results in [1], the global and local convergence of the two methods can be obtained under very mild conditions. The global convergence of the two methods do not need the boundness of the inverse of the Jacobian. The superlinear convergence of Algorithm 2.1′ is obtained under the assumption of nonsingularity of generalized Jacobian of φ(x, y) at the limit point and Algorithm 2.1 obtains superlinear convergence under the assumption of strict complementarity at the solution. The effciency of the two methods is tested by numerical experiments.展开更多
文摘The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.
基金supported by the Yunnan Provincial Applied Basic Research Program of China(No. KKSY201207019)
文摘A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.
基金The Major State Research Program (G1999030803) of China and the NNSF (G10271066, 19972023) of China.
文摘A finite volume element predictor-corrector method for a class of nonlinear parabolic system of equations is presented and analyzed. Suboptimal L^2 error estimate for the finite volume element predictor-corrector method is derived. A numerical experiment shows that the numerical results are consistent with theoretical analysis.
文摘In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.
基金Supported by the National Natural Science Foundation of China(71471102)
文摘In Zhang’s recent works,a second-order Mehrotra-type predictor-corrector algorithm for linear optimization was extended to semidefinite optimization and derived that the algorithm for semidefinite optimization had3/2 0 T 0O(nlog(X)gS/e)iteration complexity based on the NT direction as Newton search direction.In this paper,we extend the second-order Mehrotra-type predictor-corrector algorithm for linear optimization to semidefinite optimization and discuss the polynomial convergence of the algorithm by modifying the corrector direction and new iterates.It is proved that the iteration complexity is reduced to0 0O(nlog XgS/e),which coincides with the currently best iteration bound of Mehrotra-type predictor-corrector algorithm for semidefinite optimization.
文摘The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.
基金Supported by the Natural Science Foundation of Hubei Province(Grant No.2008CDZ047)
文摘Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm.
文摘Quasi-periodic responses can appear in a wide variety of nonlinear dynamical systems. To the best of our knowledge, it has been a tough job for years to solve quasi-periodic solutions, even by numerical algorithms. Here in this paper, we will present effective and accurate algorithms for quasi-periodic solutions by improving Wilson-θ and Newmark-β methods, respectively. In both the two methods, routinely, the considered equations are rearranged in the form of incremental equilibrium equations with the coefficient matrixes being updated in each time step. In this study, the two methods are improved via a predictor-corrector algorithm without updating the coefficient matrixes, in which the predicted solution at one time point can be corrected to the true one at the next. Numerical examples show that, both the improved Wilson-θ and Newmark-β methods can provide much more accurate quasi-periodic solutions with a smaller amount of computational resources. With a simple way to adjust the convergence of the iterations, the improved methods can even solve some quasi-periodic systems effectively, for which the original methods cease to be valid.
文摘This paper proposes a continuous block method for the solution of second order ordinary differential equation. Collocation and interpolation of the power series approximate solution are adopted to derive a continuous implicit linear multistep method. Continuous block method is used to derive the independent solution which is evaluated at selected grid points to generate the discrete block method. The order, consistency, zero stability and stability region are investigated. The new method was found to compare favourably with the existing methods in term of accuracy.
文摘The paper introduces a new class of numerical schemes for the approximate solutions of stochastic pantograph equations. As an effective technique to implement implicit stochastic methods, strong predictor-corrector methods (PCMs) are designed to handle scenario simulation of solutions of stochastic pantograph equations. It is proved that the PCMs are strong convergent with order 1/2.Linear M^-stabiiity of stochastic pantograph equationsand the PCMs are researched in the paper. Sufficient conditions of MS-unstability of stochastic pantograph equations and MS-stability of the PCMs are obtained, respectively. Numerical experiments demonstrate these theoretical results.
文摘We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition.A finite difference method with a predictor-corrector method is applied to solve the nonlinear potential flow equations in a two-dimensional (2D) tank.The irregular tank is mapped onto a fixed square domain with rectangular cells through a proper mapping function.A staggered mesh system is adopted in a 2D tank to capture the wave elevation of the transient fluid.The finite difference method with a predictor-corrector scheme is applied to discretize the nonlinear dynamic boundary condition and nonlinear kinematic boundary condition.We present the numerical results of wave elevations from small to large amplitude waves with free oscillation motion,and the numerical solutions of wave elevation with horizontal excited motion.The beating period and the nonlinear phenomenon are very clear.The numerical solutions agree well with the analytical solutions and previously published results.
基金the National Natural Science Foundation of China
文摘A fractional-step method of predictor-corrector difference-pseudospectrum with unconditional L2-stability and exponential convergence is presented. The stability and convergence of this method is strictly proved mathematically for a nonlinear convection-dominated flow. The error estimation is given and the superiority of this method is verified by numerical test.
文摘In this paper, we analyze the global and local convergence properties of two predictor-corrector smoothing methods, which are based on the framework of the method in [1], for monotone linear complementarity problems (LCPs). The difference between the algorithm in [1] and our algorithms is that the neighborhood of smoothing central path in our paper is different to that in [1]. In addition, the difference between Algorithm 2.1 and the algorithm in [1] exists in the calculation of the predictor step. Comparing with the results in [1], the global and local convergence of the two methods can be obtained under very mild conditions. The global convergence of the two methods do not need the boundness of the inverse of the Jacobian. The superlinear convergence of Algorithm 2.1′ is obtained under the assumption of nonsingularity of generalized Jacobian of φ(x, y) at the limit point and Algorithm 2.1 obtains superlinear convergence under the assumption of strict complementarity at the solution. The effciency of the two methods is tested by numerical experiments.