A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorith...A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.展开更多
Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutua...Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process.展开更多
Objective To develop an onset risk prediction nomogram for patients with homocysteine-type(H-type)hypertension(HTH)based on pulse diagram parameters to assist early clinical prediction and diagnosis of HTH.Methods Pat...Objective To develop an onset risk prediction nomogram for patients with homocysteine-type(H-type)hypertension(HTH)based on pulse diagram parameters to assist early clinical prediction and diagnosis of HTH.Methods Patients diagnosed with essential hypertension and admitted to Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,Shang-hai Hospital of Traditional Chinese Medicine,and Shanghai Hospital of Integrated Tradition-al Chinese and Western Medicine from July 6th 2020 to June 16th 2021,and from August 11th 2023 to January 22nd 2024,were enrolled in this retrospective research.The baselines and clinical biochemical indicators of patients were collected.The SMART-I TCM pulse instru-ment was applied to gather pulse diagram parameters.Multivariate logistic regression was adopted to analyze the risk factors for HTH.RStudio was employed to construct the nomo-gram model,receiver operating characteristic(ROC)curve,and calibration curve(bootstrap self-sampling 200 times),and clinical decision curve were drawn to evaluate the model’s dis-crimination and clinical effectiveness.Results A total of 168 hospitalized patients with essential hypertension were selected and di-vided into non-HTH group(n=29)and HTH group(n=139).Compared with non-HTH group,HTH group had a lower body mass index(BMI),and higher proportions of male pa-tients and drinkers(P<0.05).The ventricular wall thickening(VWT)could not be deter-mined.The proportions of left common carotid intima-media wall thickness(LCCIMWT)and serum creatinine(SCR)were higher in HTH group(P<0.05).The pulse diagram parameter As was significantly higher,and H4/H1 and T1/T were lower in HTH group(P<0.05).Gender,al-cohol consumption,serum creatinine,and the pulse diagram parameter H4/H1 were identi-fied as independent risk factors for HTH(P<0.05).The nomogram’s area under the ROC curve(AUC)was 0.795[95%confidence interval(CI):(0.7066,0.8828)],with a specificity of 0.724 and sensitivity of 0.799.After 200 times repeated bootstrap self-samplings,the calibra-tion curve showed that the simulated curve fits well with the actual curve(x^(2)=9.5002,P=0.3019).The clinical decision curve indicated that the nomogram’s applicability was optimal when the threshold for predicting HTH was between 0.38 and 1.00.Conclusion The nomogram model could be valuable for predicting the onset risk of HTH and pulse diagram parameters can facilitate early screening and prevention of HTH.展开更多
BACKGROUND The hepatic venous pressure gradient serves as a crucial parameter for assessing portal hypertension and predicting clinical decompensation in individuals with cirrhosis.However,owing to its invasive nature...BACKGROUND The hepatic venous pressure gradient serves as a crucial parameter for assessing portal hypertension and predicting clinical decompensation in individuals with cirrhosis.However,owing to its invasive nature,there has been growing interest in identifying noninvasive alternatives.Transient elastography offers a promising approach for measuring liver stiffness and spleen stiffness,which can help estimate the likelihood of decompensation in patients with chronic liver disease.AIM To investigate the predictive ability of the liver stiffness measurement(LSM)and spleen stiffness measurement(SSM)in conjunction with other noninvasive indicators for clinical decompensation in patients suffering from compensatory cirrhosis and portal hypertension.METHODS This study was a retrospective analysis of the clinical data of 200 patients who were diagnosed with viral cirrhosis and who received computed tomography,transient elastography,ultrasound,and endoscopic examinations at The Second Affiliated Hospital of Xi’an Jiaotong University between March 2020 and November 2022.Patient classification was performed in accordance with the Baveno VI consensus.The area under the curve was used to evaluate and compare the predictive accuracy across different patient groups.The diagnostic effectiveness of several models,including the liver stiffness-spleen diameter-platelet ratio,variceal risk index,aspartate aminotransferase-alanine aminotransferase ratio,Baveno Ⅵ criteria,and newly developed models,was assessed.Additionally,decision curve analysis was carried out across a range of threshold probabilities to evaluate the clinical utility of these predictive factors.RESULTS Univariate and multivariate analyses demonstrated that SSM,LSM,and the spleen length diameter(SLD)were linked to clinical decompensation in individuals with viral cirrhosis.On the basis of these findings,a predictive model was developed via logistic regression:Ln[P/(1-P)]=-4.969-0.279×SSM+0.348×LSM+0.272×SLD.The model exhibited strong performance,with an area under the curve of 0.944.At a cutoff value of 0.56,the sensitivity,specificity,positive predictive value,and negative predictive value for predicting clinical decompensation were 85.29%,88.89%,87.89%,and 86.47%,respectively.The newly developed model demonstrated enhanced accuracy in forecasting clinical decompensation among patients suffering from viral cirrhosis when compared to four previously established models.CONCLUSION Noninvasive models utilizing SSM,LSM,and SLD are effective in predicting clinical decompensation among patients with viral cirrhosis,thereby reducing the need for unnecessary hepatic venous pressure gradient testing.展开更多
BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive mod...BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy.展开更多
To reduce the uncertainty associated with the traditional definition of tunnel boring machine(TBM)utilization(U)and achieve an effective indicator of TBM performance,a new performance indicator called rock mass-relate...To reduce the uncertainty associated with the traditional definition of tunnel boring machine(TBM)utilization(U)and achieve an effective indicator of TBM performance,a new performance indicator called rock mass-related utilization(U_(r))is introduced;this variable considers only rock mass-related factors rather than all potential factors.This work aims to predict U_(r)by adopting the rock mass rating(RMR)and the moisture-dependent Cerchar abrasivity index(CAI).Substantial U_(r),RMR and CAI data are acquired from a 31.57 km northwestern Chinese water conveyance tunnel via tunnelling field recordings,geological investigations and Cerchar abrasivity tests.The moisture dependence of the CAI is explored across four lithologies:quartz schists,granites,sandstones and metamorphic andesites.The potential influences of RMR and CAI on Ur are then investigated.As the RMR increases,U_(r)initially increases and then peaks at an RMR of 56 before declining.U_(r)appears to decline with CAI.An investigation-based relation among U_(r),RMR and moisture-dependent CAI is developed for estimating U_(r).The developed relation can accurately predict U_(r)using RMR and moisture-dependent CAI in the majority of the tunnelling cases examined.This work proposes a stable indicator of TBM performance and provided a fairly accurate prediction method for this indicator.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there hav...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation.展开更多
Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary ...Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data.This study combined data-quality detection,anomaly detection,and abnormality-classification-model development.The research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and testing.The data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial pilots.The results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”.展开更多
BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To ...BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models...Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes.展开更多
Objective:To construct a risk prediction model for fall in patients with maintenance hemodialysis(MHD)and to verify the prediction effect of the model.Methods:From June 2020 to December 2020,307 patients who underwent...Objective:To construct a risk prediction model for fall in patients with maintenance hemodialysis(MHD)and to verify the prediction effect of the model.Methods:From June 2020 to December 2020,307 patients who underwent MHD in a tertiary hospital in Chengdu were divided into a fall group(32 cases)and a non-fall group(275 cases).Logistic regression analysis model was used to establish the influencing factors of the subjects.Hosmer–Lemeshow and receiver operating characteristic(ROC)curve were used to test the goodness of fit and predictive effect of the model,and 104 patients were again included in the application research of the model.Results:The risk factors for fall were history of falls in the past year(OR=3.951),dialysis-related hypotension(OR=6.949),time up and go(TUG)test(OR=4.630),serum albumin(OR=0.661),frailty(OR=7.770),and fasting blood glucose(OR=1.141).Hosmer–Lemeshow test was P=0.475;the area under the ROC curve was 0.907;the Youden index was 0.642;the sensitivity was 0.843;and the specificity was 0.799.Conclusions:The risk prediction model constructed in this study has a good effect and can provide references for clinical screening of fall risks in patients with MHD.展开更多
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Testicular torsion is a urological emergency that requires prompt diagnosis and treatment,accounting for 10%-15%of cases of acute scrotum.[1]It occurs most frequently during the perinatal period and adolescence and ca...Testicular torsion is a urological emergency that requires prompt diagnosis and treatment,accounting for 10%-15%of cases of acute scrotum.[1]It occurs most frequently during the perinatal period and adolescence and can occur at any age.[2]The incidence of testicular torsion is 1/4,000 in males under 25 years of age and 1/160 in males over 25 years of age.[3]Unilateral torsion is relatively common,with a higher incidence on the left side.Testicular torsion is typically managed through surgical exploration.Necrotic testes,identified by a black appearance,require orchiectomy.[4]展开更多
This article discusses the innovative use of computed tomography radiomics combined with clinical factors to predict treatment response to first-line transarterial chemoembolization in hepatocellular carcinoma.Zhao et...This article discusses the innovative use of computed tomography radiomics combined with clinical factors to predict treatment response to first-line transarterial chemoembolization in hepatocellular carcinoma.Zhao et al developed a robust predictive model demonstrating high accuracy(area under the curve 0.92 in the training cohort)by integrating venous phase radiomic features with alphafetoprotein levels.This noninvasive approach enables early identification of patients unlikely to benefit from transarterial chemoembolization,allowing a timely transition to alternative therapies such as targeted agents or immunotherapy.Such precision strategies may improve clinical outcomes,optimize resource utilization,and increase survival in advanced hepatocellular carcinoma management.Future studies should emphasize external validation and broader clinical adoption.展开更多
BACKGROUND Colorectal cancer(CRC)is one of the most prevalent and lethal malignant tumors worldwide.Currently,surgical intervention was the primary treatment modality for CRC.However,increasing studies have revealed t...BACKGROUND Colorectal cancer(CRC)is one of the most prevalent and lethal malignant tumors worldwide.Currently,surgical intervention was the primary treatment modality for CRC.However,increasing studies have revealed that CRC patients may experience postoperative cognitive dysfunction(POCD).AIM To establish a risk prediction model for POCD in CRC patients and investigate the preventive value of dexmedetomidine(DEX).METHODS A retrospective analysis was conducted on clinical data from 140 CRC patients who underwent surgery at the People’s Hospital of Qian Nan from February 2020 to May 2024.Patients were allocated into a modeling group(n=98)and a validation group(n=42)in a 7:3 ratio.General clinical data were collected.Additionally,in the modeling group,patients who received DEX preoperatively were incorporated into the observation group(n=54),while those who did not were placed in the control group(n=44).The incidence of POCD was recorded for both cohorts.Data analysis was performed using statistical product and service solutions 20.0,with t-tests orχ^(2) tests employed for group comparisons based on the data type.Least absolute shrinkage and selection operator regression was applied to identify influencing factors and reduce the impact of multicollinear predictors among variables.Multivariate analysis was carried out using Logistic regression.Based on the identified risk factors,a risk prediction model for POCD in CRC patients was developed,and the predictive value of these risk factors was evaluated.RESULTS Significant differences were observed between the cognitive dysfunction group and the non-cognitive dysfunction group in diabetes status,alcohol consumption,years of education,anesthesia duration,intraoperative blood loss,intraoperative hypoxemia,use of DEX during surgery,intraoperative use of vasoactive drugs,surgical time,systemic inflammatory response syndrome(SIRS)score(P<0.05).Multivariate Logistic regression analysis identified that diabetes[odds ratio(OR)=4.679,95%confidence interval(CI)=1.382-15.833],alcohol consumption(OR=5.058,95%CI:1.255-20.380),intraoperative hypoxemia(OR=4.697,95%CI:1.380-15.991),no use of DEX during surgery(OR=3.931,95%CI:1.383-11.175),surgery duration≥90 minutes(OR=4.894,95%CI:1.377-17.394),and a SIRS score≥3(OR=4.133,95%CI:1.323-12.907)were independent risk factors for POCD in CRC patients(P<0.05).A risk prediction model for POCD was constructed using diabetes,alcohol consumption,intraoperative hypoxemia,non-use of DEX during surgery,surgery duration,and SIRS score as factors.A receiver operator characteristic curve analysis of these factors revealed the model’s predictive sensitivity(88.56%),specificity(70.64%),and area under the curve(AUC)(AUC=0.852,95%CI:0.773-0.919).The model was validated using 42 CRC patients who met the inclusion criteria,demonstrating sensitivity(80.77%),specificity(81.25%),and accuracy(80.95%),and AUC(0.805)in diagnosing cognitive impairment,with a 95%CI:0.635-0.896.CONCLUSION Logistic regression analysis identified that diabetes,alcohol consumption,intraoperative hypoxemia,non-use of DEX during surgery,surgery duration,and SIRS score vigorously influenced the occurrence of POCD.The risk prediction model based on these factors demonstrated good predictive performance for POCD in CRC individuals.This study offers valuable insights for clinical practice and contributes to the prevention and management of POCD under CRC circumstances.展开更多
Malaria remains a major public health challenge necessitating accurate predictive models to inform effective intervention strategies in Sierra Leone. This study compares the performance of Holt-Winters’ Exponential S...Malaria remains a major public health challenge necessitating accurate predictive models to inform effective intervention strategies in Sierra Leone. This study compares the performance of Holt-Winters’ Exponential Smoothing, Harmonic, and Artificial Neural Network (ANN) models using data from January 2018 to December 2023, incorporating both historical case records from Sierra Leone’s Health Management Information System (HMIS) and meteorological variables including humidity, precipitation, and temperature. The ANN model demonstrated superior performance, achieving a Mean Absolute Percentage Error (MAPE) of 4.74% before including climatic variables. This was further reduced to 3.9% with the inclusion of climatic variables, outperforming traditional models like Holt-Winters and Harmonic, which yielded MAPEs of 22.53% and 17.90% respectively. The ANN’s success is attributed to its ability to capture complex, non-linear relationships in the data, particularly when enhanced with relevant climatic variables. Using the optimized ANN model, we forecasted malaria cases for the next 24 months, predicting a steady increase from January 2024 to December 2025, with seasonal peaks. This study underscores the potential of machine learning approaches, particularly ANNs, in epidemiological modelling and highlights the importance of integrating environmental factors into malaria prediction models, recommending the ANN model for informing more targeted and efficient malaria control strategies to improve public health outcomes in Sierra Leone and similar settings.展开更多
The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There i...The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There is a need to evaluate and enhance wildfire prediction methods,focusing on their application during extended periods of intense heat and drought.This study reviews various wildfire modelling approaches,including traditional physical,semi-empirical,numerical,and emerging machine learning(ML)-based models.We critically assess these models’capabilities in predicting fire susceptibility and post-ignition spread,highlighting their strengths and limitations.Our findings indicate that while traditional models provide foundational insights,they often fall short in dynamically estimating parameters and predicting ignition events.Cellular automata models,despite their potential,face challenges in data integration and computational demands.Conversely,ML models demonstrate superior efficiency and accuracy by leveraging diverse datasets,though they encounter interpretability issues.This review recommends hybrid modelling approaches that integrate multiple methods to harness their combined strengths.By incorporating data assimilation techniques with dynamic forecasting models,the predictive capabilities of ML-based predictions can be significantly enhanced.This review underscores the necessity for continued refinement of these models to ensure their reliability in real-world applications,ultimately contributing to more effective wildfire mitigation and management strategies.Future research should focus on improving hybrid models and exploring new data integration methods to advance predictive capabilities.展开更多
BACKGROUND Colorectal polyps(CPs)are important precursor lesions of colorectal cancer,and endoscopic surgery remains the primary treatment option.However,the shortterm recurrence rate post-surgery is high,and the risk...BACKGROUND Colorectal polyps(CPs)are important precursor lesions of colorectal cancer,and endoscopic surgery remains the primary treatment option.However,the shortterm recurrence rate post-surgery is high,and the risk factors for recurrence remain unknown.AIM To comprehensively explore risk factors for short-term recurrence of CPs after endoscopic surgery and develop a nomogram prediction model.METHODS Overall,362 patients who underwent endoscopic polypectomy between January 2022 and January 2024 at Nanjing Jiangbei Hospital were included.We screened basic demographic data,clinical and polyp characteristics,surgery-related information,and independent risk factors for CPs recurrence using univariate and multivariate logistic regression analyses.The multivariate analysis results were used to construct a nomogram prediction model,internally validated using Bootstrapping,with performance evaluated using area under the curve(AUC),calibration curve,and decision curve analysis.RESULTS CP re-occurred in 166(45.86%)of the 362 patients within 1 year post-surgery.Multivariate logistic regression analysis showed that age(OR=1.04,P=0.002),alcohol consumption(OR=2.07,P=0.012),Helicobacter pylori infection(OR=2.34,P<0.001),polyp number>2(OR=1.98,P=0.005),sessile polyps(OR=2.10,P=0.006),and adenomatous pathological type(OR=3.02,P<0.001)were independent risk factors for post-surgery recurrence.The nomogram prediction model showed good discriminatory(AUC=0.73)and calibrating power,and decision curve analysis showed that the model had good clinical benefit at risk probabilities>20%.CONCLUSION We identified multiple independent risk factors for short-term recurrence after endoscopic surgery.The nomogram prediction model showed a certain degree of differentiation,calibration,and potential clinical applicability.展开更多
文摘A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.
文摘Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process.
基金National Natural Science Foundation of China (81973749 and 8143594)State Administration of Traditional Chinese Medicine High-level Chinese Medicine Key Discipline Construction Project (zyyzdxk-2023069)。
文摘Objective To develop an onset risk prediction nomogram for patients with homocysteine-type(H-type)hypertension(HTH)based on pulse diagram parameters to assist early clinical prediction and diagnosis of HTH.Methods Patients diagnosed with essential hypertension and admitted to Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,Shang-hai Hospital of Traditional Chinese Medicine,and Shanghai Hospital of Integrated Tradition-al Chinese and Western Medicine from July 6th 2020 to June 16th 2021,and from August 11th 2023 to January 22nd 2024,were enrolled in this retrospective research.The baselines and clinical biochemical indicators of patients were collected.The SMART-I TCM pulse instru-ment was applied to gather pulse diagram parameters.Multivariate logistic regression was adopted to analyze the risk factors for HTH.RStudio was employed to construct the nomo-gram model,receiver operating characteristic(ROC)curve,and calibration curve(bootstrap self-sampling 200 times),and clinical decision curve were drawn to evaluate the model’s dis-crimination and clinical effectiveness.Results A total of 168 hospitalized patients with essential hypertension were selected and di-vided into non-HTH group(n=29)and HTH group(n=139).Compared with non-HTH group,HTH group had a lower body mass index(BMI),and higher proportions of male pa-tients and drinkers(P<0.05).The ventricular wall thickening(VWT)could not be deter-mined.The proportions of left common carotid intima-media wall thickness(LCCIMWT)and serum creatinine(SCR)were higher in HTH group(P<0.05).The pulse diagram parameter As was significantly higher,and H4/H1 and T1/T were lower in HTH group(P<0.05).Gender,al-cohol consumption,serum creatinine,and the pulse diagram parameter H4/H1 were identi-fied as independent risk factors for HTH(P<0.05).The nomogram’s area under the ROC curve(AUC)was 0.795[95%confidence interval(CI):(0.7066,0.8828)],with a specificity of 0.724 and sensitivity of 0.799.After 200 times repeated bootstrap self-samplings,the calibra-tion curve showed that the simulated curve fits well with the actual curve(x^(2)=9.5002,P=0.3019).The clinical decision curve indicated that the nomogram’s applicability was optimal when the threshold for predicting HTH was between 0.38 and 1.00.Conclusion The nomogram model could be valuable for predicting the onset risk of HTH and pulse diagram parameters can facilitate early screening and prevention of HTH.
基金Supported by Xi’an Science and Technology Plan,No.23YXYJ0172.
文摘BACKGROUND The hepatic venous pressure gradient serves as a crucial parameter for assessing portal hypertension and predicting clinical decompensation in individuals with cirrhosis.However,owing to its invasive nature,there has been growing interest in identifying noninvasive alternatives.Transient elastography offers a promising approach for measuring liver stiffness and spleen stiffness,which can help estimate the likelihood of decompensation in patients with chronic liver disease.AIM To investigate the predictive ability of the liver stiffness measurement(LSM)and spleen stiffness measurement(SSM)in conjunction with other noninvasive indicators for clinical decompensation in patients suffering from compensatory cirrhosis and portal hypertension.METHODS This study was a retrospective analysis of the clinical data of 200 patients who were diagnosed with viral cirrhosis and who received computed tomography,transient elastography,ultrasound,and endoscopic examinations at The Second Affiliated Hospital of Xi’an Jiaotong University between March 2020 and November 2022.Patient classification was performed in accordance with the Baveno VI consensus.The area under the curve was used to evaluate and compare the predictive accuracy across different patient groups.The diagnostic effectiveness of several models,including the liver stiffness-spleen diameter-platelet ratio,variceal risk index,aspartate aminotransferase-alanine aminotransferase ratio,Baveno Ⅵ criteria,and newly developed models,was assessed.Additionally,decision curve analysis was carried out across a range of threshold probabilities to evaluate the clinical utility of these predictive factors.RESULTS Univariate and multivariate analyses demonstrated that SSM,LSM,and the spleen length diameter(SLD)were linked to clinical decompensation in individuals with viral cirrhosis.On the basis of these findings,a predictive model was developed via logistic regression:Ln[P/(1-P)]=-4.969-0.279×SSM+0.348×LSM+0.272×SLD.The model exhibited strong performance,with an area under the curve of 0.944.At a cutoff value of 0.56,the sensitivity,specificity,positive predictive value,and negative predictive value for predicting clinical decompensation were 85.29%,88.89%,87.89%,and 86.47%,respectively.The newly developed model demonstrated enhanced accuracy in forecasting clinical decompensation among patients suffering from viral cirrhosis when compared to four previously established models.CONCLUSION Noninvasive models utilizing SSM,LSM,and SLD are effective in predicting clinical decompensation among patients with viral cirrhosis,thereby reducing the need for unnecessary hepatic venous pressure gradient testing.
基金Supported by the National Natural Science Foundation of China Youth Training Project,No.2021GZR003and Medical-engineering Interdisciplinary Research Youth Training Project,No.2022YGJC001.
文摘BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy.
基金financially supported by the National Natural Science Foundation of China(Nos.41972270,52076198)the Key Research and Development Plan of Henan Province(No.182102210014)+2 种基金the Excellent Youth Foundation of Henan Scientific Committee(No.222300420078)the Youth Talent Promotion Project of Henan Province(No.2022HYTP019)the Open Foundation of State Key Laboratory of Shield Machine and Boring Technology(No.SKLST-2019-K06)。
文摘To reduce the uncertainty associated with the traditional definition of tunnel boring machine(TBM)utilization(U)and achieve an effective indicator of TBM performance,a new performance indicator called rock mass-related utilization(U_(r))is introduced;this variable considers only rock mass-related factors rather than all potential factors.This work aims to predict U_(r)by adopting the rock mass rating(RMR)and the moisture-dependent Cerchar abrasivity index(CAI).Substantial U_(r),RMR and CAI data are acquired from a 31.57 km northwestern Chinese water conveyance tunnel via tunnelling field recordings,geological investigations and Cerchar abrasivity tests.The moisture dependence of the CAI is explored across four lithologies:quartz schists,granites,sandstones and metamorphic andesites.The potential influences of RMR and CAI on Ur are then investigated.As the RMR increases,U_(r)initially increases and then peaks at an RMR of 56 before declining.U_(r)appears to decline with CAI.An investigation-based relation among U_(r),RMR and moisture-dependent CAI is developed for estimating U_(r).The developed relation can accurately predict U_(r)using RMR and moisture-dependent CAI in the majority of the tunnelling cases examined.This work proposes a stable indicator of TBM performance and provided a fairly accurate prediction method for this indicator.
基金Supported by the Talent Training Plan during the"14th Five-Year Plan"period of Beijing Shijitan Hospital Affiliated to Capital Medical University,No.2023LJRCLFQ.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation.
文摘Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data.This study combined data-quality detection,anomaly detection,and abnormality-classification-model development.The research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and testing.The data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial pilots.The results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”.
基金Supported by the National Key Research and Development Program of China,No.2022YFC2503600。
文摘BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
文摘Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes.
基金supported by Health Commission of Sichuan Province(No.19PJ194)。
文摘Objective:To construct a risk prediction model for fall in patients with maintenance hemodialysis(MHD)and to verify the prediction effect of the model.Methods:From June 2020 to December 2020,307 patients who underwent MHD in a tertiary hospital in Chengdu were divided into a fall group(32 cases)and a non-fall group(275 cases).Logistic regression analysis model was used to establish the influencing factors of the subjects.Hosmer–Lemeshow and receiver operating characteristic(ROC)curve were used to test the goodness of fit and predictive effect of the model,and 104 patients were again included in the application research of the model.Results:The risk factors for fall were history of falls in the past year(OR=3.951),dialysis-related hypotension(OR=6.949),time up and go(TUG)test(OR=4.630),serum albumin(OR=0.661),frailty(OR=7.770),and fasting blood glucose(OR=1.141).Hosmer–Lemeshow test was P=0.475;the area under the ROC curve was 0.907;the Youden index was 0.642;the sensitivity was 0.843;and the specificity was 0.799.Conclusions:The risk prediction model constructed in this study has a good effect and can provide references for clinical screening of fall risks in patients with MHD.
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported by the National Natural Science Foundation of China(82371709).
文摘Testicular torsion is a urological emergency that requires prompt diagnosis and treatment,accounting for 10%-15%of cases of acute scrotum.[1]It occurs most frequently during the perinatal period and adolescence and can occur at any age.[2]The incidence of testicular torsion is 1/4,000 in males under 25 years of age and 1/160 in males over 25 years of age.[3]Unilateral torsion is relatively common,with a higher incidence on the left side.Testicular torsion is typically managed through surgical exploration.Necrotic testes,identified by a black appearance,require orchiectomy.[4]
文摘This article discusses the innovative use of computed tomography radiomics combined with clinical factors to predict treatment response to first-line transarterial chemoembolization in hepatocellular carcinoma.Zhao et al developed a robust predictive model demonstrating high accuracy(area under the curve 0.92 in the training cohort)by integrating venous phase radiomic features with alphafetoprotein levels.This noninvasive approach enables early identification of patients unlikely to benefit from transarterial chemoembolization,allowing a timely transition to alternative therapies such as targeted agents or immunotherapy.Such precision strategies may improve clinical outcomes,optimize resource utilization,and increase survival in advanced hepatocellular carcinoma management.Future studies should emphasize external validation and broader clinical adoption.
基金Supported by the Research Fund of Qiannan Medical College for Nationalities,No.Qnyz202222.
文摘BACKGROUND Colorectal cancer(CRC)is one of the most prevalent and lethal malignant tumors worldwide.Currently,surgical intervention was the primary treatment modality for CRC.However,increasing studies have revealed that CRC patients may experience postoperative cognitive dysfunction(POCD).AIM To establish a risk prediction model for POCD in CRC patients and investigate the preventive value of dexmedetomidine(DEX).METHODS A retrospective analysis was conducted on clinical data from 140 CRC patients who underwent surgery at the People’s Hospital of Qian Nan from February 2020 to May 2024.Patients were allocated into a modeling group(n=98)and a validation group(n=42)in a 7:3 ratio.General clinical data were collected.Additionally,in the modeling group,patients who received DEX preoperatively were incorporated into the observation group(n=54),while those who did not were placed in the control group(n=44).The incidence of POCD was recorded for both cohorts.Data analysis was performed using statistical product and service solutions 20.0,with t-tests orχ^(2) tests employed for group comparisons based on the data type.Least absolute shrinkage and selection operator regression was applied to identify influencing factors and reduce the impact of multicollinear predictors among variables.Multivariate analysis was carried out using Logistic regression.Based on the identified risk factors,a risk prediction model for POCD in CRC patients was developed,and the predictive value of these risk factors was evaluated.RESULTS Significant differences were observed between the cognitive dysfunction group and the non-cognitive dysfunction group in diabetes status,alcohol consumption,years of education,anesthesia duration,intraoperative blood loss,intraoperative hypoxemia,use of DEX during surgery,intraoperative use of vasoactive drugs,surgical time,systemic inflammatory response syndrome(SIRS)score(P<0.05).Multivariate Logistic regression analysis identified that diabetes[odds ratio(OR)=4.679,95%confidence interval(CI)=1.382-15.833],alcohol consumption(OR=5.058,95%CI:1.255-20.380),intraoperative hypoxemia(OR=4.697,95%CI:1.380-15.991),no use of DEX during surgery(OR=3.931,95%CI:1.383-11.175),surgery duration≥90 minutes(OR=4.894,95%CI:1.377-17.394),and a SIRS score≥3(OR=4.133,95%CI:1.323-12.907)were independent risk factors for POCD in CRC patients(P<0.05).A risk prediction model for POCD was constructed using diabetes,alcohol consumption,intraoperative hypoxemia,non-use of DEX during surgery,surgery duration,and SIRS score as factors.A receiver operator characteristic curve analysis of these factors revealed the model’s predictive sensitivity(88.56%),specificity(70.64%),and area under the curve(AUC)(AUC=0.852,95%CI:0.773-0.919).The model was validated using 42 CRC patients who met the inclusion criteria,demonstrating sensitivity(80.77%),specificity(81.25%),and accuracy(80.95%),and AUC(0.805)in diagnosing cognitive impairment,with a 95%CI:0.635-0.896.CONCLUSION Logistic regression analysis identified that diabetes,alcohol consumption,intraoperative hypoxemia,non-use of DEX during surgery,surgery duration,and SIRS score vigorously influenced the occurrence of POCD.The risk prediction model based on these factors demonstrated good predictive performance for POCD in CRC individuals.This study offers valuable insights for clinical practice and contributes to the prevention and management of POCD under CRC circumstances.
文摘Malaria remains a major public health challenge necessitating accurate predictive models to inform effective intervention strategies in Sierra Leone. This study compares the performance of Holt-Winters’ Exponential Smoothing, Harmonic, and Artificial Neural Network (ANN) models using data from January 2018 to December 2023, incorporating both historical case records from Sierra Leone’s Health Management Information System (HMIS) and meteorological variables including humidity, precipitation, and temperature. The ANN model demonstrated superior performance, achieving a Mean Absolute Percentage Error (MAPE) of 4.74% before including climatic variables. This was further reduced to 3.9% with the inclusion of climatic variables, outperforming traditional models like Holt-Winters and Harmonic, which yielded MAPEs of 22.53% and 17.90% respectively. The ANN’s success is attributed to its ability to capture complex, non-linear relationships in the data, particularly when enhanced with relevant climatic variables. Using the optimized ANN model, we forecasted malaria cases for the next 24 months, predicting a steady increase from January 2024 to December 2025, with seasonal peaks. This study underscores the potential of machine learning approaches, particularly ANNs, in epidemiological modelling and highlights the importance of integrating environmental factors into malaria prediction models, recommending the ANN model for informing more targeted and efficient malaria control strategies to improve public health outcomes in Sierra Leone and similar settings.
基金funding enabled and organized by CAUL and its Member Institutions.
文摘The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There is a need to evaluate and enhance wildfire prediction methods,focusing on their application during extended periods of intense heat and drought.This study reviews various wildfire modelling approaches,including traditional physical,semi-empirical,numerical,and emerging machine learning(ML)-based models.We critically assess these models’capabilities in predicting fire susceptibility and post-ignition spread,highlighting their strengths and limitations.Our findings indicate that while traditional models provide foundational insights,they often fall short in dynamically estimating parameters and predicting ignition events.Cellular automata models,despite their potential,face challenges in data integration and computational demands.Conversely,ML models demonstrate superior efficiency and accuracy by leveraging diverse datasets,though they encounter interpretability issues.This review recommends hybrid modelling approaches that integrate multiple methods to harness their combined strengths.By incorporating data assimilation techniques with dynamic forecasting models,the predictive capabilities of ML-based predictions can be significantly enhanced.This review underscores the necessity for continued refinement of these models to ensure their reliability in real-world applications,ultimately contributing to more effective wildfire mitigation and management strategies.Future research should focus on improving hybrid models and exploring new data integration methods to advance predictive capabilities.
文摘BACKGROUND Colorectal polyps(CPs)are important precursor lesions of colorectal cancer,and endoscopic surgery remains the primary treatment option.However,the shortterm recurrence rate post-surgery is high,and the risk factors for recurrence remain unknown.AIM To comprehensively explore risk factors for short-term recurrence of CPs after endoscopic surgery and develop a nomogram prediction model.METHODS Overall,362 patients who underwent endoscopic polypectomy between January 2022 and January 2024 at Nanjing Jiangbei Hospital were included.We screened basic demographic data,clinical and polyp characteristics,surgery-related information,and independent risk factors for CPs recurrence using univariate and multivariate logistic regression analyses.The multivariate analysis results were used to construct a nomogram prediction model,internally validated using Bootstrapping,with performance evaluated using area under the curve(AUC),calibration curve,and decision curve analysis.RESULTS CP re-occurred in 166(45.86%)of the 362 patients within 1 year post-surgery.Multivariate logistic regression analysis showed that age(OR=1.04,P=0.002),alcohol consumption(OR=2.07,P=0.012),Helicobacter pylori infection(OR=2.34,P<0.001),polyp number>2(OR=1.98,P=0.005),sessile polyps(OR=2.10,P=0.006),and adenomatous pathological type(OR=3.02,P<0.001)were independent risk factors for post-surgery recurrence.The nomogram prediction model showed good discriminatory(AUC=0.73)and calibrating power,and decision curve analysis showed that the model had good clinical benefit at risk probabilities>20%.CONCLUSION We identified multiple independent risk factors for short-term recurrence after endoscopic surgery.The nomogram prediction model showed a certain degree of differentiation,calibration,and potential clinical applicability.