The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due t...The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due to fluctuations in renewable energy generation.Leveraging building flexibility to address these power fluctuations within IES is a promising strategy,which requires coordinated control between air-conditioning systems and other IES components.This study proposes a cross-time-scale control framework that contains optimal scheduling and on-the-fly flexible control to reduce the cost impacts of a residential IES system equipped with photovoltaic(PV)panels,batteries,a heat pump,and a domestic hot water tank.The method involves three key steps:solar irradiance prediction,day-ahead optimal scheduling of energy storage,and intra-day flexible control of the heat pump.The method is validated through a high-fidelity residential building model with actual weather and energy usage data in Frankfurt,Germany.Results reveal that the proposed method limits the cost increase to just 2.67% compared to the day-ahead schedule,whereas the cost could increase by 7.39% without the flexible control.Additionally,computational efficiency is enhanced by transforming the mixed-integer programming(MIP)into nonlinear programming(NLP)problem via introducing action-exclusive constraints.This approach offers valuable support for residential IES operations.展开更多
Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to dev...Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to developing reasonable rasterization technical schemes and to making products of high quality.Analyzing and establishing a quantitative relationship between the error and its affecting factors is the key to error prediction.In this study,land cover data of China at a scale of 1:250 000 were taken as an example for analyzing the relationship between rasterization errors and the density of arc length(DA),the density of polygon(DP) and the size of grid cells(SG).Significant correlations were found between the errors and DA,DP and SG.The correlation coefficient(R2) of a model established based on samples collected in a small region(Beijing) reaches 0.95,and the value of R2 is equal to 0.91 while the model was validated with samples from the whole nation.On the other hand,the R2 of a model established based on nationwide samples reaches 0.96,and R2 is equal to 0.91 while it was validated with the samples in Beijing.These models depict well the relationships between rasterization errors and their affecting factors(DA,DP and SG).The analyzing method established in this study can be applied to effectively predicting rasterization errors in other cases as well.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cau...With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.展开更多
Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction s...Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction skill in the context of an optimal observing system. In this study, the impact on prediction skill is explored using an intermediate coupled model in which errors in initial conditions formed to make ENSO predictions are removed in certain areas. Based on ideal observing system simulation experiments, the importance of various observational networks on improvement of El Ni n?o prediction skill is examined. The results indicate that the initial states in the central and eastern equatorial Pacific are important to improve El Ni n?o prediction skill effectively. When removing the initial condition errors in the central equatorial Pacific, ENSO prediction errors can be reduced by 25%. Furthermore, combinations of various subregions are considered to demonstrate the efficiency on ENSO prediction skill. Particularly, seasonally varying observational networks are suggested to improve the prediction skill more effectively. For example, in addition to observing in the central equatorial Pacific and its north throughout the year,increasing observations in the eastern equatorial Pacific during April to October is crucially important, which can improve the prediction accuracy by 62%. These results also demonstrate the effectiveness of the conditional nonlinear optimal perturbation approach on detecting sensitive areas for target observations.展开更多
The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-divis...The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design.展开更多
Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionall...Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionally normal but are rather leptokurtic and heavy-tailed.This feature was merely noticed in previous studies but never thoroughly investigated.This study characterized the prediction error distribution of a newly developed such tree height model for Pin us radiata(D.Don)through the three-parameter Burr TypeⅫ(BⅫ)distribution.The model’s prediction errors(ε)exhibited heteroskedasticity conditional mainly on the small end relative diameter of the top log and also on DBH to a minor extent.Structured serial correlations were also present in the data.A total of 14 candidate weighting functions were compared to select the best two for weightingεin order to reduce its conditional heteroskedasticity.The weighted prediction errors(εw)were shifted by a constant to the positive range supported by the BXII distribution.Then the distribution of weighted and shifted prediction errors(εw+)was characterized by the BⅫdistribution using maximum likelihood estimation through 1000 times of repeated random sampling,fitting and goodness-of-fit testing,each time by randomly taking only one observation from each tree to circumvent the potential adverse impact of serial correlation in the data on parameter estimation and inferences.The nonparametric two sample Kolmogorov-Smirnov(KS)goodness-of-fit test and its closely related Kuiper’s(KU)test showed the fitted BⅫdistributions provided a good fit to the highly leptokurtic and heavy-tailed distribution ofε.Random samples generated from the fitted BⅫdistributions ofεw+derived from using the best two weighting functions,when back-shifted and unweighted,exhibited distributions that were,in about97 and 95%of the 1000 cases respectively,not statistically different from the distribution ofε.Our results for cut-tolength P.radiata stems represented the first case of any tree species where a non-normal error distribution in tree height prediction was described by an underlying probability distribution.The fitted BXII prediction error distribution will help to unlock the full potential of the new tree height model in forest resources modelling of P.radiata plantations,particularly when uncertainty assessments,statistical inferences and error propagations are needed in research and practical applications through harvester data analytics.展开更多
A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency a...A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.展开更多
Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model...Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.展开更多
The purpose of this study is to establish a multivariate nonlinear regression mathematical model to predict the displacement of tumor during brain tumor resection surgery.And the study will be integrated with augmente...The purpose of this study is to establish a multivariate nonlinear regression mathematical model to predict the displacement of tumor during brain tumor resection surgery.And the study will be integrated with augmented reality technology to achieve three-dimensional visualization,thereby enhancing the complete resection rate of tumor and the success rate of surgery.Based on the preoperative MRI data of the patients,a 3D virtual model is reconstructed and 3D printed.A brain biomimetic model is created using gel injection molding.By considering cerebrospinal fluid loss and tumor cyst fluid loss as independent variables,the highest point displacement in the vertical bone window direction is determined as the dependent variable after positioning the patient for surgery.An orthogonal experiment is conducted on the biomimetic model to establish a predictive model,and this model is incorporated into the augmented reality navigation system.To validate the predictive model,five participants wore HoloLens2 devices,overlaying the patient’s 3D virtual model onto the physical head model.Subsequently,the spatial coordinates of the tumor’s highest point after displacement were measured on both the physical and virtual models(actual coordinates and predicted coordinates,respectively).The difference between these coordinates represents the model’s prediction error.The results indicate that the measured and predicted errors for the displacement of the tumor’s highest point on the X and Y axes range from−0.6787 mm to 0.2957 mm and−0.4314 mm to 0.2253 mm,respectively.The relative errors for each experimental group are within 10%,demonstrating a good fit of the model.This method of establishing a regression model represents a preliminary attempt to predict brain tumor displacement in specific situations.It also provides a new approach for surgeons.By combining augmented reality visualization,it addresses the need for predicting tumor displacement and precisely locating brain anatomical structures in a simple and cost-effective manner.展开更多
AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Uni...AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Universal II(BUII)IOL formula for calculation.METHODS:The prospective study included patients who had undergone cataract surgery performed by a single surgeon from June 2020 to April 2022.The collected data included the best-corrected visual acuity(BCVA),corneal curvature,preoperative and postoperative central anterior chamber depths(ACD),axial length(AXL),IOL power,and refractive error.BUII formula was used to calculate the IOL power.The mean absolute error(MAE)was calculated,and all the participants were divided into two groups accordingly.Independent t-tests were applied to compare the variables between groups.Logistic regression analysis was used to analyze the influence of age,AXL,corneal curvature,and preoperative and postoperative ACD on MAE.RESULTS:A total of 261 patients were enrolled.The 243(93.1%)and 18(6.9%)had postoperative MAE<1 and>1 D,respectively.The number of females was higher in patients with MAE>1 D(χ^(2)=3.833,P=0.039).The postoperative BCVA(logMAR)of patients with MAE>1 D was significantly worse(t=-2.448;P=0.025).After adjusting for gender in the logistic model,the risk of postoperative refractive errors was higher in patients with a shallow postoperative anterior chamber[odds ratio=0.346;95% confidence interval(CI):0.164,0.730,P=0.005].CONCLUSION:Risk factors for biometry prediction error after cataract surgery include the patient’s sex and postoperative ACD.Patients with a shallow postoperative anterior chamber are prone to have refractive errors.展开更多
We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training ph...We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.展开更多
Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume...Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume equations. Based on the tree volume and aboveground biomass data of Masson pine (Pinus massoniana Lamb.) in southern China, we constructed one-, two- and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations. The prediction precision of aboveground biomass estimates from one variable equa- tion exceeded 95%. The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height, although the contributions to regressions were statistically insignificant. For the biomass conversion function on one variable, the conversion factor decreased with increasing diameter, but for the conversion function on two variables, the conversion factor increased with increasing diameter but decreased with in- creasing tree height.展开更多
Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on t...Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surfacc errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling fbrces calculated by the micro-unit cutting force model arc loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed mcthod not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.展开更多
Currently,simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge.Existing compensating methods are mainly focusing on 3-aixs...Currently,simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge.Existing compensating methods are mainly focusing on 3-aixs machining,which sometimes only take one given point as the compensative point at each given cutter location.This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts.Based on an improved cutting force/heat model and finite element method(FEM)simulation environment,a deflection error prediction model,which takes sequence of cutter contact lines as compensation targets,is established.And an iterative algorithm is presented to determine feasible cutter axis positions.The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm.The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction,and is also validated with flank milling experiment by using five-axis machine tool.At the same time,the deformation error is detected by using three-coordinate measuring machine.Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods.The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.展开更多
Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analy...Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analysis. In addition to the original stock return series, the linear prediction errors of the daily returns are also tested. Numerical results show that the Hurst exponent analysis can provide some information about the statistical properties of the financial time series.展开更多
Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combin...Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data.展开更多
A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The prin...A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.展开更多
With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational dat...With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation.展开更多
Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encr...Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images,we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling.First,the prediction error image is obtained by a novel prediction method before encryption.Then,the image pixel values are divided into two categories by the threshold range,which is selected adaptively according to the image content.Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged.The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm.Moreover,the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position.Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-of-the-art methods for images with different texture complexity.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB4200902)。
文摘The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due to fluctuations in renewable energy generation.Leveraging building flexibility to address these power fluctuations within IES is a promising strategy,which requires coordinated control between air-conditioning systems and other IES components.This study proposes a cross-time-scale control framework that contains optimal scheduling and on-the-fly flexible control to reduce the cost impacts of a residential IES system equipped with photovoltaic(PV)panels,batteries,a heat pump,and a domestic hot water tank.The method involves three key steps:solar irradiance prediction,day-ahead optimal scheduling of energy storage,and intra-day flexible control of the heat pump.The method is validated through a high-fidelity residential building model with actual weather and energy usage data in Frankfurt,Germany.Results reveal that the proposed method limits the cost increase to just 2.67% compared to the day-ahead schedule,whereas the cost could increase by 7.39% without the flexible control.Additionally,computational efficiency is enhanced by transforming the mixed-integer programming(MIP)into nonlinear programming(NLP)problem via introducing action-exclusive constraints.This approach offers valuable support for residential IES operations.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050000)Special Program for Informatization of Chinese Academy of Sciences(No.INF0-115-C01-SDB3-02)
文摘Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to developing reasonable rasterization technical schemes and to making products of high quality.Analyzing and establishing a quantitative relationship between the error and its affecting factors is the key to error prediction.In this study,land cover data of China at a scale of 1:250 000 were taken as an example for analyzing the relationship between rasterization errors and the density of arc length(DA),the density of polygon(DP) and the size of grid cells(SG).Significant correlations were found between the errors and DA,DP and SG.The correlation coefficient(R2) of a model established based on samples collected in a small region(Beijing) reaches 0.95,and the value of R2 is equal to 0.91 while the model was validated with samples from the whole nation.On the other hand,the R2 of a model established based on nationwide samples reaches 0.96,and R2 is equal to 0.91 while it was validated with the samples in Beijing.These models depict well the relationships between rasterization errors and their affecting factors(DA,DP and SG).The analyzing method established in this study can be applied to effectively predicting rasterization errors in other cases as well.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.
基金This work was jointly supported by Chinese Academy of Sciences(CAS)International Partnership Creative Group"The Climate System Model Development and Application Studies",KZCX3-SW-230 of the Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant Nos.40505013,40675030),and the IAP07401 and IAP07202 of Institute of Atmospheric Physics,CAS.
文摘With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19060102)the National Natural Science Foundation of China (Grant Nos. 41475101, 41690122, 41690120 and 41421005)the National Programme on Global Change and Air–Sea Interaction Interaction (Grant Nos. GASI-IPOVAI-06 and GASI-IPOVAI-01-01)
文摘Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction skill in the context of an optimal observing system. In this study, the impact on prediction skill is explored using an intermediate coupled model in which errors in initial conditions formed to make ENSO predictions are removed in certain areas. Based on ideal observing system simulation experiments, the importance of various observational networks on improvement of El Ni n?o prediction skill is examined. The results indicate that the initial states in the central and eastern equatorial Pacific are important to improve El Ni n?o prediction skill effectively. When removing the initial condition errors in the central equatorial Pacific, ENSO prediction errors can be reduced by 25%. Furthermore, combinations of various subregions are considered to demonstrate the efficiency on ENSO prediction skill. Particularly, seasonally varying observational networks are suggested to improve the prediction skill more effectively. For example, in addition to observing in the central equatorial Pacific and its north throughout the year,increasing observations in the eastern equatorial Pacific during April to October is crucially important, which can improve the prediction accuracy by 62%. These results also demonstrate the effectiveness of the conditional nonlinear optimal perturbation approach on detecting sensitive areas for target observations.
基金supported by the ZTE Industry⁃University⁃Institute Cooper⁃ation Funds under Grant No.2021ZTE01⁃03.
文摘The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design.
文摘Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionally normal but are rather leptokurtic and heavy-tailed.This feature was merely noticed in previous studies but never thoroughly investigated.This study characterized the prediction error distribution of a newly developed such tree height model for Pin us radiata(D.Don)through the three-parameter Burr TypeⅫ(BⅫ)distribution.The model’s prediction errors(ε)exhibited heteroskedasticity conditional mainly on the small end relative diameter of the top log and also on DBH to a minor extent.Structured serial correlations were also present in the data.A total of 14 candidate weighting functions were compared to select the best two for weightingεin order to reduce its conditional heteroskedasticity.The weighted prediction errors(εw)were shifted by a constant to the positive range supported by the BXII distribution.Then the distribution of weighted and shifted prediction errors(εw+)was characterized by the BⅫdistribution using maximum likelihood estimation through 1000 times of repeated random sampling,fitting and goodness-of-fit testing,each time by randomly taking only one observation from each tree to circumvent the potential adverse impact of serial correlation in the data on parameter estimation and inferences.The nonparametric two sample Kolmogorov-Smirnov(KS)goodness-of-fit test and its closely related Kuiper’s(KU)test showed the fitted BⅫdistributions provided a good fit to the highly leptokurtic and heavy-tailed distribution ofε.Random samples generated from the fitted BⅫdistributions ofεw+derived from using the best two weighting functions,when back-shifted and unweighted,exhibited distributions that were,in about97 and 95%of the 1000 cases respectively,not statistically different from the distribution ofε.Our results for cut-tolength P.radiata stems represented the first case of any tree species where a non-normal error distribution in tree height prediction was described by an underlying probability distribution.The fitted BXII prediction error distribution will help to unlock the full potential of the new tree height model in forest resources modelling of P.radiata plantations,particularly when uncertainty assessments,statistical inferences and error propagations are needed in research and practical applications through harvester data analytics.
基金National Natural Science Foundation of China(No.12472038)Natural Science Foundation of Jiangsu Province(No.BK20230688)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJB440004)Key Research and Development Program of Xuzhou(No.KC22404)Research Fund for Doctoral Degree Teachers of Jiangsu Normal University of China(No.22XFRS011).
文摘A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.
基金supported by the National Natural Science Foundation of China(62473020).
文摘Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.
基金the University of Shanghai for Science and Technology’s Medical Engineering Interdisciplinary Project(No.10-22-308-520)the Ministry of Education’s First Batch of Industry-Education Cooperation Collaborative Education Projects(No.202101042008)+1 种基金the Fundamental Research Funds for the Central Universities(No.YG2019QNA34)the Shanghai Municipal Health Commission for Youth Clinical Research Project(No.20194Y0134)。
文摘The purpose of this study is to establish a multivariate nonlinear regression mathematical model to predict the displacement of tumor during brain tumor resection surgery.And the study will be integrated with augmented reality technology to achieve three-dimensional visualization,thereby enhancing the complete resection rate of tumor and the success rate of surgery.Based on the preoperative MRI data of the patients,a 3D virtual model is reconstructed and 3D printed.A brain biomimetic model is created using gel injection molding.By considering cerebrospinal fluid loss and tumor cyst fluid loss as independent variables,the highest point displacement in the vertical bone window direction is determined as the dependent variable after positioning the patient for surgery.An orthogonal experiment is conducted on the biomimetic model to establish a predictive model,and this model is incorporated into the augmented reality navigation system.To validate the predictive model,five participants wore HoloLens2 devices,overlaying the patient’s 3D virtual model onto the physical head model.Subsequently,the spatial coordinates of the tumor’s highest point after displacement were measured on both the physical and virtual models(actual coordinates and predicted coordinates,respectively).The difference between these coordinates represents the model’s prediction error.The results indicate that the measured and predicted errors for the displacement of the tumor’s highest point on the X and Y axes range from−0.6787 mm to 0.2957 mm and−0.4314 mm to 0.2253 mm,respectively.The relative errors for each experimental group are within 10%,demonstrating a good fit of the model.This method of establishing a regression model represents a preliminary attempt to predict brain tumor displacement in specific situations.It also provides a new approach for surgeons.By combining augmented reality visualization,it addresses the need for predicting tumor displacement and precisely locating brain anatomical structures in a simple and cost-effective manner.
基金Supported by the Innovation&Transfer Fund of Peking University Third Hospital(No.BYSYZHKC2021108).
文摘AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Universal II(BUII)IOL formula for calculation.METHODS:The prospective study included patients who had undergone cataract surgery performed by a single surgeon from June 2020 to April 2022.The collected data included the best-corrected visual acuity(BCVA),corneal curvature,preoperative and postoperative central anterior chamber depths(ACD),axial length(AXL),IOL power,and refractive error.BUII formula was used to calculate the IOL power.The mean absolute error(MAE)was calculated,and all the participants were divided into two groups accordingly.Independent t-tests were applied to compare the variables between groups.Logistic regression analysis was used to analyze the influence of age,AXL,corneal curvature,and preoperative and postoperative ACD on MAE.RESULTS:A total of 261 patients were enrolled.The 243(93.1%)and 18(6.9%)had postoperative MAE<1 and>1 D,respectively.The number of females was higher in patients with MAE>1 D(χ^(2)=3.833,P=0.039).The postoperative BCVA(logMAR)of patients with MAE>1 D was significantly worse(t=-2.448;P=0.025).After adjusting for gender in the logistic model,the risk of postoperative refractive errors was higher in patients with a shallow postoperative anterior chamber[odds ratio=0.346;95% confidence interval(CI):0.164,0.730,P=0.005].CONCLUSION:Risk factors for biometry prediction error after cataract surgery include the patient’s sex and postoperative ACD.Patients with a shallow postoperative anterior chamber are prone to have refractive errors.
基金supported by the Natural Science Research Project of Colleges and Universities in Anhui Province (No.KJ2021A0479)the Science Research Program of Anhui University of Finance and Economics (No.ACKYC22082)。
文摘We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.
基金the National Biomass Modeling Program for Continuous Forest Inventory(NBMP-CFI) funded by the State Forestry Administration of China
文摘Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume equations. Based on the tree volume and aboveground biomass data of Masson pine (Pinus massoniana Lamb.) in southern China, we constructed one-, two- and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations. The prediction precision of aboveground biomass estimates from one variable equa- tion exceeded 95%. The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height, although the contributions to regressions were statistically insignificant. For the biomass conversion function on one variable, the conversion factor decreased with increasing diameter, but for the conversion function on two variables, the conversion factor increased with increasing diameter but decreased with in- creasing tree height.
基金Supported by National Natural Science Foundation of China(Grant No.51175304)Shandong Provincial Science and Technology Development Plan of China(Grant No.2013GHZ30305)
文摘Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surfacc errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling fbrces calculated by the micro-unit cutting force model arc loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed mcthod not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.
基金supported by Key Program of National Natural Science Foundation of China(Grant No.50835001)General Program of National Natural Science Foundation of China(Grant No.50775023)Program for New Century Excellent Talents of Ministry of Education of China(Grant No.NCET-08-081)
文摘Currently,simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge.Existing compensating methods are mainly focusing on 3-aixs machining,which sometimes only take one given point as the compensative point at each given cutter location.This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts.Based on an improved cutting force/heat model and finite element method(FEM)simulation environment,a deflection error prediction model,which takes sequence of cutter contact lines as compensation targets,is established.And an iterative algorithm is presented to determine feasible cutter axis positions.The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm.The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction,and is also validated with flank milling experiment by using five-axis machine tool.At the same time,the deformation error is detected by using three-coordinate measuring machine.Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods.The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.
文摘Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analysis. In addition to the original stock return series, the linear prediction errors of the daily returns are also tested. Numerical results show that the Hurst exponent analysis can provide some information about the statistical properties of the financial time series.
基金provided by the National Natural Science Foundation of China(Grant Nos.41275039 and 41471305)the Preeminence Youth Cultivation Project of Sichuan (Grant No.2015JQ0037)
文摘Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data.
文摘A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.
基金The National Natural Science Foundation of China under contract No.41405062
文摘With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation.
基金supported by the National Natural Science Foundation of China(61872303,U1936113)the Science and Technology Innovation Talents Program of Sichuan Science and Technology Department(2018RZ0143)the Key Project of Sichuan Science and Technology Innovation Pioneering Miaozi Project(19MZGC0163).
文摘Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images,we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling.First,the prediction error image is obtained by a novel prediction method before encryption.Then,the image pixel values are divided into two categories by the threshold range,which is selected adaptively according to the image content.Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged.The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm.Moreover,the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position.Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-of-the-art methods for images with different texture complexity.