期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Optimal Scheduling and On-the-Fly Flexible Control of Integrated Energy Systems for Residential Buildings Considering Photovoltaic Prediction Errors
1
作者 Ziqing Wei Xiaoqiang Zhai Ruzhu Wang 《Engineering》 2025年第10期104-115,共12页
The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due t... The integrated energy systems(IESs)offer a practical solution for achieving low-carbon targets in residential buildings.However,IES encounters several challenges related to increased energy consumption and costs due to fluctuations in renewable energy generation.Leveraging building flexibility to address these power fluctuations within IES is a promising strategy,which requires coordinated control between air-conditioning systems and other IES components.This study proposes a cross-time-scale control framework that contains optimal scheduling and on-the-fly flexible control to reduce the cost impacts of a residential IES system equipped with photovoltaic(PV)panels,batteries,a heat pump,and a domestic hot water tank.The method involves three key steps:solar irradiance prediction,day-ahead optimal scheduling of energy storage,and intra-day flexible control of the heat pump.The method is validated through a high-fidelity residential building model with actual weather and energy usage data in Frankfurt,Germany.Results reveal that the proposed method limits the cost increase to just 2.67% compared to the day-ahead schedule,whereas the cost could increase by 7.39% without the flexible control.Additionally,computational efficiency is enhanced by transforming the mixed-integer programming(MIP)into nonlinear programming(NLP)problem via introducing action-exclusive constraints.This approach offers valuable support for residential IES operations. 展开更多
关键词 Integrated energy system Residential building flexibility Photovoltaic prediction errors Heat pump Model predictive control
在线阅读 下载PDF
Errors Prediction for Vector-to-Raster Conversion Based on Map Load and Cell Size 被引量:2
2
作者 LIAO Shunbao BAI Zhongqiang BAI Yan 《Chinese Geographical Science》 SCIE CSCD 2012年第6期695-704,共10页
Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to dev... Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to developing reasonable rasterization technical schemes and to making products of high quality.Analyzing and establishing a quantitative relationship between the error and its affecting factors is the key to error prediction.In this study,land cover data of China at a scale of 1:250 000 were taken as an example for analyzing the relationship between rasterization errors and the density of arc length(DA),the density of polygon(DP) and the size of grid cells(SG).Significant correlations were found between the errors and DA,DP and SG.The correlation coefficient(R2) of a model established based on samples collected in a small region(Beijing) reaches 0.95,and the value of R2 is equal to 0.91 while the model was validated with samples from the whole nation.On the other hand,the R2 of a model established based on nationwide samples reaches 0.96,and R2 is equal to 0.91 while it was validated with the samples in Beijing.These models depict well the relationships between rasterization errors and their affecting factors(DA,DP and SG).The analyzing method established in this study can be applied to effectively predicting rasterization errors in other cases as well. 展开更多
关键词 vector-to-raster conversion rasterization error prediction map load cell size
在线阅读 下载PDF
Predicting bathymetry based on vertical gravity gradient anomaly and analyses for various influential factors 被引量:1
3
作者 Huan Xu Jinhai Yu +3 位作者 Yanyan Zeng Qiuyu Wang Yuwei Tian Zhongmiao Sun 《Geodesy and Geodynamics》 EI CSCD 2024年第4期386-396,共11页
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti... The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively. 展开更多
关键词 Rectangular prism Vertical gravity gradient BATHYMETRY Numerical simulation Prediction error
原文传递
What Kind of Initial Errors Cause the Severest Prediction Uncertainty of E1 Nino in Zebiak-Cane Model 被引量:1
4
作者 徐辉 段晚锁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期577-584,共8页
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cau... With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill. 展开更多
关键词 ENSO PREDICTABILITY prediction error optimal perturbation
在线阅读 下载PDF
ENSO Predictions in an Intermediate Coupled Model Influenced by Removing Initial Condition Errors in Sensitive Areas: A Target Observation Perspective 被引量:4
5
作者 Ling-Jiang TAO Chuan GAO Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第7期853-867,共15页
Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction s... Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction skill in the context of an optimal observing system. In this study, the impact on prediction skill is explored using an intermediate coupled model in which errors in initial conditions formed to make ENSO predictions are removed in certain areas. Based on ideal observing system simulation experiments, the importance of various observational networks on improvement of El Ni n?o prediction skill is examined. The results indicate that the initial states in the central and eastern equatorial Pacific are important to improve El Ni n?o prediction skill effectively. When removing the initial condition errors in the central equatorial Pacific, ENSO prediction errors can be reduced by 25%. Furthermore, combinations of various subregions are considered to demonstrate the efficiency on ENSO prediction skill. Particularly, seasonally varying observational networks are suggested to improve the prediction skill more effectively. For example, in addition to observing in the central equatorial Pacific and its north throughout the year,increasing observations in the eastern equatorial Pacific during April to October is crucially important, which can improve the prediction accuracy by 62%. These results also demonstrate the effectiveness of the conditional nonlinear optimal perturbation approach on detecting sensitive areas for target observations. 展开更多
关键词 El Nio prediction initial condition errors target observations
在线阅读 下载PDF
Robust Beamforming Under Channel Prediction Errors for Time-Varying MIMO System 被引量:1
6
作者 ZHU Yuting LI Zeng ZHANG Hongtao 《ZTE Communications》 2023年第3期77-85,共9页
The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-divis... The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design. 展开更多
关键词 time-varying channels time-division duplex robust beamforming channel prediction errors weighted sum-rate maximization
在线阅读 下载PDF
Characterizing prediction errors of a new tree height model for cut-to-length Pinus radiata stems through the Burr TypeⅫdistribution
7
作者 Xinyu Cao Huiquan Bi +1 位作者 Duncan Watt Yun Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1899-1914,共16页
Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionall... Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionally normal but are rather leptokurtic and heavy-tailed.This feature was merely noticed in previous studies but never thoroughly investigated.This study characterized the prediction error distribution of a newly developed such tree height model for Pin us radiata(D.Don)through the three-parameter Burr TypeⅫ(BⅫ)distribution.The model’s prediction errors(ε)exhibited heteroskedasticity conditional mainly on the small end relative diameter of the top log and also on DBH to a minor extent.Structured serial correlations were also present in the data.A total of 14 candidate weighting functions were compared to select the best two for weightingεin order to reduce its conditional heteroskedasticity.The weighted prediction errors(εw)were shifted by a constant to the positive range supported by the BXII distribution.Then the distribution of weighted and shifted prediction errors(εw+)was characterized by the BⅫdistribution using maximum likelihood estimation through 1000 times of repeated random sampling,fitting and goodness-of-fit testing,each time by randomly taking only one observation from each tree to circumvent the potential adverse impact of serial correlation in the data on parameter estimation and inferences.The nonparametric two sample Kolmogorov-Smirnov(KS)goodness-of-fit test and its closely related Kuiper’s(KU)test showed the fitted BⅫdistributions provided a good fit to the highly leptokurtic and heavy-tailed distribution ofε.Random samples generated from the fitted BⅫdistributions ofεw+derived from using the best two weighting functions,when back-shifted and unweighted,exhibited distributions that were,in about97 and 95%of the 1000 cases respectively,not statistically different from the distribution ofε.Our results for cut-tolength P.radiata stems represented the first case of any tree species where a non-normal error distribution in tree height prediction was described by an underlying probability distribution.The fitted BXII prediction error distribution will help to unlock the full potential of the new tree height model in forest resources modelling of P.radiata plantations,particularly when uncertainty assessments,statistical inferences and error propagations are needed in research and practical applications through harvester data analytics. 展开更多
关键词 Conditional heteroskedasticity Leptokurtic error distribution Skedactic function Nonlinear quantile regression Weighted prediction errors Serial correlation Random sampling and fitting Nonparametric goodnessof-fit tests
在线阅读 下载PDF
Positioning error prediction and compensation for the multi-boom working mechanism of a drilling jumbo 被引量:1
8
作者 Yuming CUI Songyong LIU +2 位作者 Zhengqiang SHU Zhenli LV Lie LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第1期66-77,共12页
A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency a... A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling. 展开更多
关键词 Multi-boom rock-drilling jumbo Kinematic model Neural network optimization Positioning error prediction
原文传递
Koopman-Based Robust Model Predictive Control With Online Identification for Nonlinear Dynamical Systems
9
作者 Ruiqi Ke Jingchuan Tang +1 位作者 Zongyu Zuo Yan Shi 《IEEE/CAA Journal of Automatica Sinica》 2025年第9期1947-1949,共3页
Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model... Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation. 展开更多
关键词 koopman operatora online identification tube based control real time prediction error online sparse identification identified model Koopman based control robust model predictive control
在线阅读 下载PDF
Tumor Displacement Prediction and Augmented Reality Visualization in Brain Tumor Resection Surgery
10
作者 WANG Jiayu WANG Shuyi +4 位作者 WEI Yongxu LIAO Chencong SHANG Hanbing WANG Xue KANG Ning 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期733-743,共11页
The purpose of this study is to establish a multivariate nonlinear regression mathematical model to predict the displacement of tumor during brain tumor resection surgery.And the study will be integrated with augmente... The purpose of this study is to establish a multivariate nonlinear regression mathematical model to predict the displacement of tumor during brain tumor resection surgery.And the study will be integrated with augmented reality technology to achieve three-dimensional visualization,thereby enhancing the complete resection rate of tumor and the success rate of surgery.Based on the preoperative MRI data of the patients,a 3D virtual model is reconstructed and 3D printed.A brain biomimetic model is created using gel injection molding.By considering cerebrospinal fluid loss and tumor cyst fluid loss as independent variables,the highest point displacement in the vertical bone window direction is determined as the dependent variable after positioning the patient for surgery.An orthogonal experiment is conducted on the biomimetic model to establish a predictive model,and this model is incorporated into the augmented reality navigation system.To validate the predictive model,five participants wore HoloLens2 devices,overlaying the patient’s 3D virtual model onto the physical head model.Subsequently,the spatial coordinates of the tumor’s highest point after displacement were measured on both the physical and virtual models(actual coordinates and predicted coordinates,respectively).The difference between these coordinates represents the model’s prediction error.The results indicate that the measured and predicted errors for the displacement of the tumor’s highest point on the X and Y axes range from−0.6787 mm to 0.2957 mm and−0.4314 mm to 0.2253 mm,respectively.The relative errors for each experimental group are within 10%,demonstrating a good fit of the model.This method of establishing a regression model represents a preliminary attempt to predict brain tumor displacement in specific situations.It also provides a new approach for surgeons.By combining augmented reality visualization,it addresses the need for predicting tumor displacement and precisely locating brain anatomical structures in a simple and cost-effective manner. 展开更多
关键词 brain tumor intraoperative displacement biomimetic model multivariate nonlinear regression model augmented reality prediction error
原文传递
Risk factors for biometry prediction error by Barrett Universal II intraocular lens formula in Chinese patients
11
作者 Xu-Hao Chen Ying Hong +3 位作者 Xiang-Han Ke Si-Jia Song Yu-Jie Cen Chun Zhang 《International Journal of Ophthalmology(English edition)》 2025年第1期74-78,共5页
AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Uni... AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Universal II(BUII)IOL formula for calculation.METHODS:The prospective study included patients who had undergone cataract surgery performed by a single surgeon from June 2020 to April 2022.The collected data included the best-corrected visual acuity(BCVA),corneal curvature,preoperative and postoperative central anterior chamber depths(ACD),axial length(AXL),IOL power,and refractive error.BUII formula was used to calculate the IOL power.The mean absolute error(MAE)was calculated,and all the participants were divided into two groups accordingly.Independent t-tests were applied to compare the variables between groups.Logistic regression analysis was used to analyze the influence of age,AXL,corneal curvature,and preoperative and postoperative ACD on MAE.RESULTS:A total of 261 patients were enrolled.The 243(93.1%)and 18(6.9%)had postoperative MAE<1 and>1 D,respectively.The number of females was higher in patients with MAE>1 D(χ^(2)=3.833,P=0.039).The postoperative BCVA(logMAR)of patients with MAE>1 D was significantly worse(t=-2.448;P=0.025).After adjusting for gender in the logistic model,the risk of postoperative refractive errors was higher in patients with a shallow postoperative anterior chamber[odds ratio=0.346;95% confidence interval(CI):0.164,0.730,P=0.005].CONCLUSION:Risk factors for biometry prediction error after cataract surgery include the patient’s sex and postoperative ACD.Patients with a shallow postoperative anterior chamber are prone to have refractive errors. 展开更多
关键词 intraocular lens power calculation GENDER anterior chamber depth biometry prediction error
原文传递
Gain adaptive tuning method for fiber Raman amplifier based on two-stage neural networks and double weights updates
12
作者 MU Kuanlin WU Yue 《Optoelectronics Letters》 2025年第5期284-289,共6页
We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training ph... We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy. 展开更多
关键词 gain adaptive tuning connection weights error predicted target gains training connection weights unified nn gain adaptive tuning method double weights updates fiber raman amplifier fra
原文传递
Modeling compatible single-tree aboveground biomass equations for masson pine(Pinus massoniana) in southern China 被引量:22
13
作者 ZENG Wei-sheng TANG Shou-zheng 《Journal of Forestry Research》 CAS CSCD 2012年第4期593-598,共6页
Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume... Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume equations. Based on the tree volume and aboveground biomass data of Masson pine (Pinus massoniana Lamb.) in southern China, we constructed one-, two- and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations. The prediction precision of aboveground biomass estimates from one variable equa- tion exceeded 95%. The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height, although the contributions to regressions were statistically insignificant. For the biomass conversion function on one variable, the conversion factor decreased with increasing diameter, but for the conversion function on two variables, the conversion factor increased with increasing diameter but decreased with in- creasing tree height. 展开更多
关键词 aboveground biomass error-in-variable simultaneous equa- tions mean prediction error compatibility Pinus massoniana
在线阅读 下载PDF
Error Compensation of Thin Plate-shape Part with Prebending Method in Face Milling 被引量:10
14
作者 YI Wei JIANG Zhaoliang +2 位作者 SHAO Weixian HAN Xiangcheng LIU Wenping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期88-95,共8页
Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on t... Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surfacc errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling fbrces calculated by the micro-unit cutting force model arc loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed mcthod not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy. 展开更多
关键词 face milling error prediction prebending error compensation FIXTURE
在线阅读 下载PDF
Redesigned Surface Based Machining Strategy and Method in Peripheral Milling of Thin-walled Parts 被引量:7
15
作者 JIA Zhenyuan GUO Qiang +1 位作者 SUN Yuwen GUO Dongming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期282-287,共6页
Currently,simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge.Existing compensating methods are mainly focusing on 3-aixs... Currently,simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge.Existing compensating methods are mainly focusing on 3-aixs machining,which sometimes only take one given point as the compensative point at each given cutter location.This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts.Based on an improved cutting force/heat model and finite element method(FEM)simulation environment,a deflection error prediction model,which takes sequence of cutter contact lines as compensation targets,is established.And an iterative algorithm is presented to determine feasible cutter axis positions.The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm.The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction,and is also validated with flank milling experiment by using five-axis machine tool.At the same time,the deformation error is detected by using three-coordinate measuring machine.Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods.The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts. 展开更多
关键词 redesigned surface tool path part deflection error prediction finite element method
在线阅读 下载PDF
Hurst Exponent Analysis of Financial Time Series 被引量:7
16
作者 SANG Hong wei, MA Tian, WANG Shuo zhong School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第4期269-272,共4页
Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analy... Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analysis. In addition to the original stock return series, the linear prediction errors of the daily returns are also tested. Numerical results show that the Hurst exponent analysis can provide some information about the statistical properties of the financial time series. 展开更多
关键词 Hurst exponent linear prediction error financial time series
在线阅读 下载PDF
Extended Range(10–30 Days) Heavy Rain Forecasting Study Based on a Nonlinear Cross-Prediction Error Model 被引量:5
17
作者 XIA Zhiye CHEN Hongbin +1 位作者 XU Lisheng WANG Yongqian 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1583-1591,共9页
Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combin... Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data. 展开更多
关键词 nonlinear cross prediction error extended range forecasting phase space
在线阅读 下载PDF
Ship motion extreme short time prediction of ship pitch based on diagonal recurrent neural network 被引量:3
18
作者 SHEN Yan XIE Mei-ping 《Journal of Marine Science and Application》 2005年第2期56-60,共5页
A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The prin... A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible. 展开更多
关键词 extreme short time prediction diagonal recursive neural network recurrent prediction error learning algorithm UNBIASEDNESS
在线阅读 下载PDF
Impact of observational MJO forcing on ENSO predictability in the Zebiak-Cane model: PartⅠ.Effect on the maximum prediction error 被引量:4
19
作者 PENG Yuehua SONG Junqiang +1 位作者 XIANG Jie SUN Chengzhi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第5期39-45,共7页
With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational dat... With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation. 展开更多
关键词 E1 Nifio-Southern Oscillation (ENSO) Madden-/ulian Oscillation (M/O) maximum prediction error Conditional Nonlinear Optimal Perturbation (CNOP)
在线阅读 下载PDF
Reversible Data Hiding in Encrypted Images Based on Prediction and Adaptive Classification Scrambling 被引量:2
20
作者 Lingfeng Qu Hongjie He +1 位作者 Shanjun Zhang Fan Chen 《Computers, Materials & Continua》 SCIE EI 2020年第12期2623-2638,共16页
Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encr... Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images,we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling.First,the prediction error image is obtained by a novel prediction method before encryption.Then,the image pixel values are divided into two categories by the threshold range,which is selected adaptively according to the image content.Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged.The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm.Moreover,the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position.Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-of-the-art methods for images with different texture complexity. 展开更多
关键词 Reversible data hiding classification scrambling prediction error multi-bits embedding
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部