期刊文献+
共找到632篇文章
< 1 2 32 >
每页显示 20 50 100
Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach 被引量:3
1
作者 LI Binquan HU Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期238-244,共7页
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif... How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks. 展开更多
关键词 convolutional NEURAL network (CNN) DISTRIBUTED architecture REMOTE SENSING images (RSIs) TARGET classification pre-training
在线阅读 下载PDF
High-Quality Single-Pixel Imaging Based on Large-Kernel Convolution under Low-Sampling Conditions
2
作者 Chenyu Yuan Yuanhao Su Chunfang Wang 《Chinese Physics Letters》 2025年第4期55-61,共7页
In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To addr... In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions. 展开更多
关键词 large kernel convolution lkconv recover image details U lkconv network high quality single pixel imaging U Net low sampling conditions enhanced network structure large kernel convolution
原文传递
A Low-Power 12-Bit SAR ADC for Analog Convolutional Kernel of Mixed-Signal CNN Accelerator
3
作者 Jungyeon Lee Malik Summair Asghar HyungWon Kim 《Computers, Materials & Continua》 SCIE EI 2023年第5期4357-4375,共19页
As deep learning techniques such as Convolutional Neural Networks(CNNs)are widely adopted,the complexity of CNNs is rapidly increasing due to the growing demand for CNN accelerator system-on-chip(SoC).Although convent... As deep learning techniques such as Convolutional Neural Networks(CNNs)are widely adopted,the complexity of CNNs is rapidly increasing due to the growing demand for CNN accelerator system-on-chip(SoC).Although conventional CNN accelerators can reduce the computational time of learning and inference tasks,they tend to occupy large chip areas due to many multiply-and-accumulate(MAC)operators when implemented in complex digital circuits,incurring excessive power consumption.To overcome these drawbacks,this work implements an analog convolutional filter consisting of an analog multiply-and-accumulate arithmetic circuit along with an analog-to-digital converter(ADC).This paper introduces the architecture of an analog convolutional kernel comprised of low-power ultra-small circuits for neural network accelerator chips.ADC is an essential component of the analog convolutional kernel used to convert the analog convolutional result to digital values to be stored in memory.This work presents the implementation of a highly low-power and area-efficient 12-bit Successive Approximation Register(SAR)ADC.Unlink most other SAR-ADCs with differential structure;the proposed ADC employs a single-ended capacitor array to support the preceding single-ended max-pooling circuit along with minimal power consumption.The SARADCimplementation also introduces a unique circuit that reduces kick-back noise to increase performance.It was implemented in a test chip using a 55 nm CMOS process.It demonstrates that the proposed ADC reduces Kick-back noise by 40%and consequently improves the ADC’s resolution by about 10%while providing a near rail-to-rail dynamic rangewith significantly lower power consumption than conventional ADCs.The ADC test chip shows a chip size of 4600μm^(2)with a power consumption of 6.6μW while providing an signal-to-noise-and-distortion ratio(SNDR)of 68.45 dB,corresponding to an effective number of bits(ENOB)of 11.07 bits. 展开更多
关键词 convolution neural networks split-capacitor-based digital-toanalog converter(DAC) SAR analog-to-digital converter artificial intelligence SYSTEM-ON-CHIP analog convolutional kernel
在线阅读 下载PDF
A Kernel-Based Convolution Method to Calculate Sparse Aerial Image Intensity for Lithography Simulation 被引量:3
4
作者 史峥 王国雄 +2 位作者 严晓浪 陈志锦 高根生 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第4期357-361,共5页
Optical proximity correction (OPC) systems require an accurate and fast way to predict how patterns will be transferred to the wafer.Based on Gabor's 'reduction to principal waves',a partially coherent ima... Optical proximity correction (OPC) systems require an accurate and fast way to predict how patterns will be transferred to the wafer.Based on Gabor's 'reduction to principal waves',a partially coherent imaging system can be represented as a superposition of coherent imaging systems,so an accurate and fast sparse aerial image intensity calculation algorithm for lithography simulation is presented based on convolution kernels,which also include simulating the lateral diffusion and some mask processing effects via Gaussian filter.The simplicity of this model leads to substantial computational and analytical benefits.Efficiency of this method is also shown through simulation results. 展开更多
关键词 lithography simulation optical proximity correction convolution kernels
在线阅读 下载PDF
A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings 被引量:12
5
作者 Ding Yunhao Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期417-423,共7页
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ... Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data. 展开更多
关键词 fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction
在线阅读 下载PDF
Forest fire smoke recognition based on convolutional neural network 被引量:3
6
作者 Xiaofang Sun Liping Sun Yinglai Huang 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第5期1921-1927,共7页
Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neu... Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neural network(CNN)to achieve fast analysis.The improved CNN can be used to liberate manpower.The network does not require complicated manual feature extraction to identify forest fire smoke.First,to alleviate the computational pressure and speed up the discrimination efficiency,kernel principal component analysis was performed on the experimental data set.To improve the robustness of the CNN and to avoid overfitting,optimization strategies were applied in multi-convolution kernels and batch normalization to improve loss functions.The experimental analysis shows that the CNN proposed in this study can learn the feature information automatically for smoke images in the early stages of fire automatically with a high recognition rate.As a result,the improved CNN enriches the theory of smoke discrimination in the early stages of a forest fire. 展开更多
关键词 Forest fire smoke convolutional neural network Image classification kernel principal component analysis
在线阅读 下载PDF
ON THE SOLUTION OF THE SINGULAR INTEGRAL EQUATIONS WITH BOTH CAUCHY AND CONVOLUTION KERNEL 被引量:1
7
作者 宫子吉 沈永祥 刘声华 《四川师范大学学报(自然科学版)》 CAS CSCD 1991年第1期13-14,共2页
The following equations are basic forms of C-K equation (which is simplified in the following as singu-lar integral equations with convolution, that is C-K equations):where a,b,a_j,b_j are known constants or known fun... The following equations are basic forms of C-K equation (which is simplified in the following as singu-lar integral equations with convolution, that is C-K equations):where a,b,a_j,b_j are known constants or known functions, and find its solution f L_P(R), {0} or {α,β}.There were rather complete investigations on the method of solution for equations of Cauchy type aswell as integral equations of convolution type. But there is not investigation to the C-K equations, nodoubt, such that is important. 展开更多
关键词 convolution simplified kernel CONSTANTS sided SOLVABILITY CAUCHY RIEMANN DOUBT SINGULAR
在线阅读 下载PDF
Optimization of optical convolution kernel of optoelectronic hybrid convolution neural network 被引量:1
8
作者 XU Xiaofeng ZHU Lianqing +3 位作者 ZHUANG Wei ZHANG Dongliang LU Lidan YUAN Pei 《Optoelectronics Letters》 EI 2022年第3期181-186,共6页
To enhance the optical computation’s utilization efficiency, we develop an optimization method for optical convolution kernel in the optoelectronic hybrid convolution neural network(OHCNN). To comply with the actual ... To enhance the optical computation’s utilization efficiency, we develop an optimization method for optical convolution kernel in the optoelectronic hybrid convolution neural network(OHCNN). To comply with the actual calculation process, the convolution kernel is expanded from single-channel to two-channel, containing positive and negative weights. The Fashion-MNIST dataset is used to test the network architecture’s accuracy, and the accuracy is improved by 7.5% with the optimized optical convolution kernel. The energy efficiency ratio(EER) of two-channel network is 46.7% higher than that of the single-channel network, and it is 2.53 times of that of traditional electronic products. 展开更多
关键词 convolutION kernel WEIGHTS
原文传递
A Class of Singular Integral Equation of Convolution Type with CSC(τ- θ) Kernel
9
作者 LI Ping-run 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第4期620-626,共7页
In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is t... In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is transformed to discrete system of equations, and then we obtain the solvable conditions and the explicit solutions in class L2[-π, π]. 展开更多
关键词 singular integral equation convolution type csc(τ-θ) kernel
在线阅读 下载PDF
LKAW: A Robust Watermarking Method Based on Large Kernel Convolution and Adaptive Weight Assignment
10
作者 Xiaorui Zhang Rui Jiang +3 位作者 Wei Sun Aiguo Song Xindong Wei Ruohan Meng 《Computers, Materials & Continua》 SCIE EI 2023年第4期1-17,共17页
Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learnin... Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise. 展开更多
关键词 Robust watermarking large kernel convolution adaptive loss weights high-frequency wavelet loss deep learning
在线阅读 下载PDF
基于多方位感知深度融合检测头的目标检测算法
11
作者 包晓安 彭书友 +3 位作者 张娜 涂小妹 张庆琪 吴彪 《浙江大学学报(工学版)》 北大核心 2026年第1期32-42,共11页
针对传统目标检测头难以有效捕捉全局信息的问题,提出基于多方位感知深度融合检测头的目标检测算法.通过在检测头部分设计高效双轴窗口注意力编码器(EDWE)模块,使网络能够深度融合捕获到的全局信息与局部信息;在特征金字塔结构之后使用... 针对传统目标检测头难以有效捕捉全局信息的问题,提出基于多方位感知深度融合检测头的目标检测算法.通过在检测头部分设计高效双轴窗口注意力编码器(EDWE)模块,使网络能够深度融合捕获到的全局信息与局部信息;在特征金字塔结构之后使用重参化大核卷积(RLK)模块,减小来自主干网络的特征空间差异,增强网络对中小型数据集的适应性;引入编码器选择保留模块(ESM),选择性地累积来自EDWE模块的输出,优化反向传播.实验结果表明,在规模较大的MS-COCO2017数据集上,所提算法应用于常见模型RetinaNet、FCOS、ATSS时使AP分别提升了2.9、2.6、3.4个百分点;在规模较小的PASCAL VOC2007数据集上,所提算法使3种模型的AP分别实现了1.3、1.0和1.1个百分点的提升.通过EDWE、RLK和ESM模块的协同作用,所提算法有效提升了目标检测精度,在不同规模的数据集上均展现了显著的性能优势. 展开更多
关键词 检测头 目标检测 Transformer编码器 深度融合 大核卷积
在线阅读 下载PDF
Multi-Scale Adaptive Large Kernel Graph Convolutional Network for Skeleton-Based Action Recognition
12
作者 Yu-Qing Zhang Chen Pang +2 位作者 Pei Geng Xue-Quan Lu Lei Lyu 《Journal of Computer Science & Technology》 2025年第5期1285-1300,共16页
Graph convolutional networks(GCNs)have become a dominant approach for skeleton-based action recognition tasks.Although GCNs have made significant progress in modeling skeletons as spatial-temporal graphs,they often re... Graph convolutional networks(GCNs)have become a dominant approach for skeleton-based action recognition tasks.Although GCNs have made significant progress in modeling skeletons as spatial-temporal graphs,they often require stacking multiple graph convolution layers to effectively capture long-distance relationships among nodes.This stacking not only increases computational burdens but also raises the risk of over-smoothing,which can lead to the neglect of crucial local action features.To address this issue,we propose a novel multi-scale adaptive large kernel graph convolutional network(MSLK-GCN)to effectively aggregate local and global spatio-temporal correlations while maintaining the computational efficiency.The core components of the network include two multi-scale large kernel graph convolution(LKGC)modules,a multi-channel adaptive graph convolution(MAGC)module,and a multi-scale temporal self-attention convolution(MSTC)module.The LKGC module adaptively focuses on active motion regions by utilizing a large convolution kernel and a gating mechanism,effectively capturing long-distance dependencies within the skeleton sequence.Meanwhile,the MAGC module dynamically learns relationships between different joints by adjusting connection weights between nodes.To further enhance the ability to capture temporal dynamics,the MSTC module effectively aggregates the temporal information by integrating Efficient Channel Attention(ECA)with multi-scale convolution.In addition,we use a multi-stream fusion strategy to make full use of different modal skeleton data,including bone,joint,joint motion,and bone motion.Exhaustive experiments on three scale-varying datasets,i.e.,NTU-60,NTU-120,and NW-UCLA,demonstrate that our MSLK-GCN can achieve state-of-the-art performance with fewer parameters. 展开更多
关键词 skeleton-based action recognition graph convolutional network(GCN) multi-scale large kernel attention
原文传递
基于多任务学习的跳频调制方式识别与信噪比估计方法
13
作者 汪有鹏 王昊 曹建银 《现代电子技术》 北大核心 2026年第1期66-72,共7页
针对目前在跳频信号识别的多任务学习中存在跷跷板现象和使用IQ信号训练出的模型泛化能力较差的问题,文中提出一种改进的方法,采用CGC的多任务网络框架结合大卷积核与结构重参数化技术,以提高跳频信号调制识别和信噪比估计的准确性。该... 针对目前在跳频信号识别的多任务学习中存在跷跷板现象和使用IQ信号训练出的模型泛化能力较差的问题,文中提出一种改进的方法,采用CGC的多任务网络框架结合大卷积核与结构重参数化技术,以提高跳频信号调制识别和信噪比估计的准确性。该多任务网络架构采用硬参数共享,将网络通道划分为专家通道和共享通道,并引入了包含大卷积核结构重参数化与残差结构的MobileBlock层。与多任务学习中常用的MMOE结构模型相比,跳频信号调制识别的分类准确率更高,信噪比估计的均方误差更小。实验结果证明了该方法在现代军事通信对抗中的应用潜力,为跳频信号识别和参数估计提供了一个较好的解决方案。 展开更多
关键词 跳频信号 调制识别 信噪比估计 多任务学习 大核卷积 结构重参数化
在线阅读 下载PDF
Selective kernel networks for weakly supervised relation extraction 被引量:7
14
作者 Ziyang Li Feng Hu +2 位作者 Chilong Wang Weibin Deng Qinghua Zhang 《CAAI Transactions on Intelligence Technology》 EI 2021年第2期224-234,共11页
The purpose of relation extraction is to identify the semantic relations between entities in sentences that contain two entities.Recently,many variants of the convolution neural network(CNN)have been introduced to rel... The purpose of relation extraction is to identify the semantic relations between entities in sentences that contain two entities.Recently,many variants of the convolution neural network(CNN)have been introduced to relation extraction for the extracting of features--the quality of the neural network model directly affects the final quality of relation extraction.However,the traditional convolution network uses a fixed convolution kernel,so it is difficult to choose the size of the convolution kernel dynamically,which results in networks with weak representation ability.To address this,a novel CNN is designed with selective kernel networks and multigranularity.In the process of feature extraction,the model can adaptively select the size of the convolution kernel,that is,give more weight to the appropriate convolution kernel.It is then combined with multigranularity convolution to obtain more abundant semantic information.Finally,a new pooling method is designed to obtain more comprehensive information and improve model performance.Experimental results indicate that this method is effective without excessively deep network layers,and it also outperforms several competitive baseline methods. 展开更多
关键词 kernel convolutION RELATION
在线阅读 下载PDF
Fast Image Segmentation Algorithm Based on Salient Features Model and Spatial-frequency Domain Adaptive Kernel 被引量:4
15
作者 WU Fupei LIANG Jiaye LI Shengping 《Instrumentation》 2022年第2期33-46,共14页
A fast image segmentation algorithm based on salient features model and spatial-frequency domain adaptive kernel is proposed to solve the accurate discriminate objects problem of online visual detection in such scenes... A fast image segmentation algorithm based on salient features model and spatial-frequency domain adaptive kernel is proposed to solve the accurate discriminate objects problem of online visual detection in such scenes of variable sample morphological characteristics,low contrast and complex background texture.Firstly,by analyzing the spectral component distribution and spatial contour feature of the image,a salient feature model is established in spatial-frequency domain.Then,the salient object detection method based on Gaussian band-pass filter and the design criterion of adaptive convolution kernel are proposed to extract the salient contour feature of the target in spatial and frequency domain.Finally,the selection and growth rules of seed points are improved by integrating the gray level and contour features of the target,and the target is segmented by seeded region growing.Experiments have been performed on Berkeley Segmentation Data Set,as well as sample images of online detection,to verify the effectiveness of the algorithm.The experimental results show that the Jaccard Similarity Coefficient of the segmentation is more than 90%,which indicates that the proposed algorithm can availably extract the target feature information,suppress the background texture and resist noise interference.Besides,the Hausdorff Distance of the segmentation is less than 10,which infers that the proposed algorithm obtains a high evaluation on the target contour preservation.The experimental results also show that the proposed algorithm significantly improves the operation efficiency while obtaining comparable segmentation performance over other algorithms. 展开更多
关键词 Image Segmentation Spatial-frequency Domain Adaptive convolution kernel Online Visual Detection
原文传递
改进YOLOv8n的选通图像目标检测算法 被引量:2
16
作者 田青 王颖 +1 位作者 张正 羊强 《计算机工程与应用》 北大核心 2025年第2期124-134,共11页
激光选通成像技术在复杂环境下表现出色,但选通图像为灰度图像无法提供颜色信息,并且对比度较低,所以在进行小目标和遮挡目标检测时更加困难。为解决以上问题提出了一种改进YOLOv8n的选通图像目标检测算法。在特征提取的主干网络部分,... 激光选通成像技术在复杂环境下表现出色,但选通图像为灰度图像无法提供颜色信息,并且对比度较低,所以在进行小目标和遮挡目标检测时更加困难。为解决以上问题提出了一种改进YOLOv8n的选通图像目标检测算法。在特征提取的主干网络部分,使用大核卷积C2f-DSF更有效地捕获输入数据的全局信息。添加了多头注意力检测头Detect-SEAM模块,增强了特征提取和目标识别的能力。为了获取不同感受野的上下文信息,增强特征提取能力,使用了SPPF-M模块。采用上采样算子Dysample,减少特征信息的损失,从而提高小目标的检测精度。改进的YOLOv8n算法在选通图像数据集上mAP@0.5提高了2.4个百分点,mAP@0.5:0.95提高了1.8个百分点。为了验证改进的YOLOv8n算法的泛化性,选取KITTI数据集实验,相比于YOLOv8n算法改进YOLOv8n的mAP@0.5提高了4.3个百分点,mAP@0.5:0.95提高了3.5个百分点。 展开更多
关键词 选通图像 YOLOv8n 遮挡目标 小目标 大卷积核
在线阅读 下载PDF
基于YOLOv8改进的跌倒检测算法:CASL-YOLO 被引量:1
17
作者 徐慧英 赵蕊 +1 位作者 朱信忠 黄晓 《浙江师范大学学报(自然科学版)》 CAS 2025年第1期36-44,共9页
跌倒对老年人危害极大,是我国65岁以上老年人致残和伤害死亡的首要原因.然而,目前主流的跌倒检测技术受环境的干扰较大,在物体遮挡、光照变化等复杂场景下的检测准确率较低,且模型的参数量和计算量较高,导致成本居高不下,不能很好地部... 跌倒对老年人危害极大,是我国65岁以上老年人致残和伤害死亡的首要原因.然而,目前主流的跌倒检测技术受环境的干扰较大,在物体遮挡、光照变化等复杂场景下的检测准确率较低,且模型的参数量和计算量较高,导致成本居高不下,不能很好地部署应用于实际生活场景.针对上述问题,提出了一种在复杂环境下轻量级的基于YOLOv8模型改进的跌倒检测算法:CASL-YOLO.首先,该模型引入空间深度卷积(SPD-Conv)模块替代传统卷积模块,通过对每个特征映射进行卷积操作,保留通道维度中的全部信息,从而提高模型在低分辨率图像和小物体检测方面的性能;其次,引入基于位置信息的注意力机制,以捕获跨通道、方向和位置感知的信息,从而更准确地定位和识别人体目标;最后,在特征提取模块中引入选择性大卷积核(LSKNet)动态调整感受野,以有效处理跌倒检测场景中的复杂环境信息,提高网络的感知能力和检测精度.实验结果表明,在公开的Human Fall数据集上,CASL-YOLO的mAP@0.5达到96.8%,优于基线YOLOv8n,同时模型仅有3.4×MiB的参数量和11.7×10^(9)的计算量.相比其他检测算法,CASL-YOLO在参数量和计算量小幅增加的情况下,实现了更高的精度和性能,同时满足实际场景的部署要求. 展开更多
关键词 跌倒检测 YOLOv8 注意力机制 空间深度卷积 选择性大卷积核
在线阅读 下载PDF
动态特征聚合与多层次协同的无人机红外目标实例分割 被引量:2
18
作者 何自芬 王启刚 +3 位作者 张印辉 黄滢 彭伟 陈光晨 《红外与激光工程》 北大核心 2025年第8期246-258,共13页
针对无人机红外成像中因距离较远导致的图像轮廓模糊及目标尺度变化致使分割精度下降的问题,文中提出动态特征聚合与多层次协同的无人机红外目标实例分割模型(Dynamic feature aggregation and multi-level collaboration,DFMCNet)。首... 针对无人机红外成像中因距离较远导致的图像轮廓模糊及目标尺度变化致使分割精度下降的问题,文中提出动态特征聚合与多层次协同的无人机红外目标实例分割模型(Dynamic feature aggregation and multi-level collaboration,DFMCNet)。首先,设计区域特征自适应卷积模块(Spatial attention dynamic convolution,SADConv),采用动态卷积核和注意力机制,有效缓解特征图降维引发的细节丢失,抑制背景噪声干扰;其次,构建特征感知重组上采样模块(Feature sensing recombination upsampling module,FRUM),利用并行化可学习权重实现特征重组,在恢复特征图分辨率时保留空间特征并增强空间结构信息关注;最后,引入多尺度上下文聚合模块(Multi-scale context aggregation feature extraction module,MSFE),通过跨层级特征融合捕获多尺度上下文信息,提升模型对尺寸差异目标的泛化性。在红外航拍交通数据集Aerial-Mancar上的实验表明,DFMCNet的mAP50精度为78.4%较基准模型提升9.7%,mAP50-95精度为51.1%提升5.6%,与YOLOv12n-seg相比mAP50提高7.2%,验证了其在无人机红外场景下实现红外目标精确分割的有效性。 展开更多
关键词 无人机红外 动态卷积核 特征重组 多尺度聚合
原文传递
基于EE-YOLOv8s的多场景火灾迹象检测算法 被引量:4
19
作者 崔克彬 耿佳昌 《图学学报》 北大核心 2025年第1期13-27,共15页
针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征... 针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。 展开更多
关键词 烟火目标检测 EfficientNetEasy主干网络 大型可分离核注意力机制 可变形卷积校准模块 小目标检测
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
20
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部