As a novel signaling technology,the power splitting receiver(PSR)simultaneously employs both the coherent and non-coherent signal processing.In order to improve its communication performance,an intelligent reflecting ...As a novel signaling technology,the power splitting receiver(PSR)simultaneously employs both the coherent and non-coherent signal processing.In order to improve its communication performance,an intelligent reflecting surface(IRS)is introduced into its signal propagation path.Consequently,an IRSaided PSR is concerned for a point-to-point(P2P)data link,where both the single-antenna and multiantenna deployments on the receiver are discussed.We aim at maximizing the capacity of the concerned P2P data-link by jointly optimizing the passive beamforming of IRS and the splitting ratio of PSR,either in single-antenna or multi-antenna case.However,owing to the coupling of multiple variables,the optimization problems are non-convex and challenging,especially in the later multi-antenna case.The proposed alternating-approximating algorithm(A-A),aided by semi-definite relaxation(SDR)and successive convex approximation(SCA)methods,etc.,successfully overcomes these challenges.We compare the IRS-aided PSR system that optimized by our proposed algorithm to the systems without IRS or PSR,and the systems without joint optimization.The simulation results show that our proposal has a better performance.展开更多
Intelligent reflecting surface(IRS) is regarded as a promising technology because it can achieve higher passive beamforming gain. In particular, the IRS assisted simultaneous wireless information and power transfer(SW...Intelligent reflecting surface(IRS) is regarded as a promising technology because it can achieve higher passive beamforming gain. In particular, the IRS assisted simultaneous wireless information and power transfer(SWIPT) system can make the information decoding receivers(IDRs) have a higher signal-to-noise ratio(SNR), and the energy harvesting receivers(EHRs) have the guarantee of minimum harvested energy threshold. Motivated by the above,in this paper, we use the power splitting(PS) at the user and introduce artificial noise(AN) into the access point(AP), so that the user in system can harvest energy and decode information simultaneously,further improve the security of user. We jointly optimize the beamforming matrix at AP, the reflection phase shift at IRS and the PS ratio, in order to maximize the user’s achievable secrecy rate, subject to the user’s minimum harvested energy threshold and AP’s transmission power. Due to the introduction of PS ratio, the coupling between variables is increased,and the complexity of the problem is significantly increased. Furthermore, the problem is non-convex, so we propose an efficient algorithm based on Taylor Formula, semi-definite relaxation(SDR) and alternating optimization(AO) to get the solution. Numerical results show that the proposed IRS-SWIPT system with PS and AN achieves significant performance improvement compared with other benchmark scheme.展开更多
In order to identify all the appropriate system schemes for the compound split systems formed primarily with a four-port mechanical power split device, power transmission characteristics of the compound split systems ...In order to identify all the appropriate system schemes for the compound split systems formed primarily with a four-port mechanical power split device, power transmission characteristics of the compound split systems was analyzed. Considering the structural symmetry and according to the different connection arrangement of the four ports, compound split system was classified into four types. Using black-box modeling method, the generalized models of the speed ratio, the torque ratio and the power split ratio were established. Moreover, a semi-invert diagram was used to distin- guish the different schemes in each type. The characteristics of the speed ratio, the torque ratio and the power split ratio in each domain were also analyzed and compared. Through the semi-invert dia- gram, a selection method based on the rated-power speed ranges in different schemes was presented and all suitable compound split systems were identified, which can be used as references for the scheme selection of this kind of continuously variable power split transmission.展开更多
The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we co...The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we consider an IRS assisted SR system where the IRS operates under power splitting(PS)mode.We aim at minimizing the IRS power consumption for the ST under the quality of service constraints for both primary and secondary transmissions by optimizing the transmit beamforming,the reflect beamforming and the PS factor.The optimization problem is non-convex.To tackle it,an algorithm is proposed by employing the block coordinate descent,semidefinite relaxation and alternating direction method of multipliers techniques.Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.展开更多
The deformation compatibility equations and the torque balance equations of star gearing with three branches have been found based on the characteristic that the system composes a closed-loop of power flow. In conside...The deformation compatibility equations and the torque balance equations of star gearing with three branches have been found based on the characteristic that the system composes a closed-loop of power flow. In consideration of the parts manufacturing errors, assembly errors, bearing stiffness and float, the power splitting rate of each star gear and the system were calculated by using the theory of equivalent mesh error. The effects of the errors, float and the bearing stiffness on power splitting were studied. The study provides a useful theoretical guideline for the design of star gearing.展开更多
Based on Newton ' s second law,the bend-torsion-shaft coupling nonlinear dynamic model and equations of power split gear transmission system are established.According to the principle of tooth profile modification...Based on Newton ' s second law,the bend-torsion-shaft coupling nonlinear dynamic model and equations of power split gear transmission system are established.According to the principle of tooth profile modification,the tooth profile modification is considered as time-varying gear backlash function acting along the line of action.Then the dynamic functions are solved by using Runge-Kutta numerical method.After analyzing the effect of tooth profile modification quantity( TPMQ) and relative tooth profile modification length( TPML) to the nonlinear dynamic characteristics of power split gear transmission,the following conclusions are drawn:1 The TPMQ of a certain stage transmission affects the vibration of its own stage more significantly than the other stage,and the coupling effect between two stages can be ignored usually in the modification design;2 If the first stage TPMLs are less than 0.3,the influence of the first stage TPMLs to the first stage transmission vibration is much more greatly than the influence of the second stage TPMLs to the first stage transmission vibration,or else both the first and second stage TPMLs affect the first stage transmission vibration largely.The same is true for the second stage TPMLs,and the cutoff value is 0.2;3 The TPMQ affects the vibration of power split gear transmission system more principally than the TPML,and should be top-priority in the modification design.展开更多
The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement....The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement.The multi-clutch configuration usually involves the collaboration of two clutches during the transient mode switching process,thereby substantially elevating control complexity.This study focuses on power split HEVs that integrate multi-clutch mechanisms and investigates how different clutch collaboration manners impact the characteristics of transient mode switching.The powertrain model for the power-split HEV is established utilizing matrix-based methodologies.Through the formulation of clutch torque curves and clutch collaboration models,this research systematically explores the effects of clutch engagement timing and the duration of clutch slipping state on transient mode switching behaviors.Building upon this analysis,an optimization problem for control parameters pertaining to the two collaborative clutches is formulated.The simulated annealing algorithm is employed to optimize these control parameters.Simulation results demonstrate that the clutch collaboration manners have a great influence on the transient mode switching performance.Compared with the pre-calibrated benchmark and the optimal solution derived by the genetic algorithm,the maximal longitudinal jerk and clutch slipping work during the transient mode switching process is reduced obviously with the optimal control parameters derived by the simulated annealing algorithm.The study provides valuable insights for the dynamic coordinated control of the power-split HEVs featuring complex clutch collaboration mechanisms.展开更多
With the combination of engine and two electric machines, the power split device allows higher efficiency of the engine. The operation modes of a power split HEV are analyzed, and the system dynamic model is establish...With the combination of engine and two electric machines, the power split device allows higher efficiency of the engine. The operation modes of a power split HEV are analyzed, and the system dynamic model is established for HEV forward simulation and controller design. Considering the fact that the operation modes of the HEV are event-driven and the system dynamics is continuous time-driven for each mode, the structure of the controller is built and described with the hybrid automaton control theory. In this control structure, the mode selection process is depicted by the finite state machine (FSM). The multi-mode switch controller is designed to realize power distribution. Furthermore, the vehicle mode operations are optimized, and the nonlinear model predictive control (NMPC) strategy is applied by implementing dynamic programming (DP) in the finite pre- diction horizon. Comparative simulation results demonstrate that the hybrid control structure is effective and feasible for HEV energy management design. The NMPC optimal strategy is superior in improving fuel economy.展开更多
Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of ...Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of PHEVs.For the purpose of improving fuel economy,the electric system including battery and motor will be frequently scheduled,which would affect battery life.Therefore,a multi-objective optimization mechanism taking fuel economy and battery life into account is necessary,which is also a research focus in field of hybrid vehicles.Motivated by this issue,this paper proposes a multi-objective power flow optimization control strategy for a power split PHEV using game theory.Firstly,since the demand power of driver which is necessary for the power flow optimization control,cannot be known in advance,the demand power of driver can be modelled using a Markov chain to obtain predicted demand power.Secondly,based on the predicted demand power,the multi-objective optimization control problem is transformed into a game problem.A novel non-cooperative game model between engine and battery is established,and the benefit function with fuel economy and battery life as the optimization objective is proposed.Thirdly,under the premise of satisfying various constraints,the participants of the above game maximize their own benefit function to obtain the Nash equilibrium,which comprises of optimal power split scheme.Finally,the proposed strategy is verified compared with two baseline strategies,and results show that the proposed strategy can reduce equivalent fuel consumption by about 15%compared with baseline strategy 1,and achieve similar fuel economy while greatly extend battery life simultaneously compared with baseline strategy 2.展开更多
In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA)...In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission.展开更多
Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviat...Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.展开更多
在复合功率分流混合动力系统中,通过离合器对功率分流装置与动力部件进行离合和制动,可以进一步提高动力性和经济性。传统湿式离合器为适应商用车大扭矩需求,需增加摩擦片数量和体积,导致成本上升和拖曳损失,而机械式离合器虽体积小、...在复合功率分流混合动力系统中,通过离合器对功率分流装置与动力部件进行离合和制动,可以进一步提高动力性和经济性。传统湿式离合器为适应商用车大扭矩需求,需增加摩擦片数量和体积,导致成本上升和拖曳损失,而机械式离合器虽体积小、承载扭矩大,但在超越过程中产生摩擦损失,无法满足混合动力商用车对可控方向锁止和双向非接触自由的需求。设计了一种多模非接触式可控单向离合器,可实现正向锁止、反向锁止以及双向自由三种模式,承载扭矩大同时避免了拖曳和摩擦损失。对多模非接触式可控单向离合器静态和模式切换过程进行了分析,以提高承载扭矩、减小瞬态冲击和实现轻量设计为目标建立了优化模型,提出融合带精英策略的非支配排序遗传算法(Non-dominated sorting genetic algorithmⅡ,NSGA2)、约束有序加权平均算子(Constrained ordered weighted averaging,COWA)和优劣解距离法(Technique for order preference by similarity to ideal solution,TOPSIS)的多目标优化决策方法,与初始方案相比,承载扭矩提升了23.5%、空转角减少了13.7%、关键部件体积减小了0.5%;搭载混合动力专用变速箱进行了台架试验,验证了设计方法的可行性。研究为大扭矩多模非接触式可控单向离合器的设计提供了参考。展开更多
为了提高无线通信系统的安全性,基于功率分割型无线携能通信(Power Splitting⁃Simultane⁃ous Wireless Information and Power Transfer,PS⁃SWIPT)模型,提出了一种有源可重构智能表面(Ac⁃tive Reconfigurable Intelligent Surface,ARIS...为了提高无线通信系统的安全性,基于功率分割型无线携能通信(Power Splitting⁃Simultane⁃ous Wireless Information and Power Transfer,PS⁃SWIPT)模型,提出了一种有源可重构智能表面(Ac⁃tive Reconfigurable Intelligent Surface,ARIS)辅助PS⁃SWIPT系统(ARIS⁃PS⁃SWIPT)的安全传输方案。综合考虑ARIS⁃PS⁃SWIPT系统的能量效率和安全性,构造了安全能效最大化问题,通过联合优化基站的波束成形向量、ARIS的反射系数矩阵,以及合法用户的功率分割比值,提升ARIS⁃PS⁃SWIPT系统的安全能效。由于所构建的优化问题为非凸问题,利用交替优化(Alternating Optimiza⁃tion,AO)算法将原问题分解为3个子问题,并进一步通过半正定松弛(Semi⁃Definite Relaxation,SDR)和Dinkelbach方法获得子问题的优化解。仿真结果表明,ARIS⁃PS⁃SWIPT方案在安全能效方面优于PRIS辅助PS⁃SWIPT(PRIS⁃PS⁃SWIPT)方案和放大转发辅助PS⁃SWIPT(AF⁃PS⁃SWIPT)方案,且所提算法相较于遗传算法(Genetic Algorithm,GA),对求解该类问题具备更高的适应性,并且获得了更高的安全能效。展开更多
基金supported by National Key R&D Program of China with Grant number 2019YFB1803400in part by Sichuan Science and Technology Program under Grant 2024NSFSC0472。
文摘As a novel signaling technology,the power splitting receiver(PSR)simultaneously employs both the coherent and non-coherent signal processing.In order to improve its communication performance,an intelligent reflecting surface(IRS)is introduced into its signal propagation path.Consequently,an IRSaided PSR is concerned for a point-to-point(P2P)data link,where both the single-antenna and multiantenna deployments on the receiver are discussed.We aim at maximizing the capacity of the concerned P2P data-link by jointly optimizing the passive beamforming of IRS and the splitting ratio of PSR,either in single-antenna or multi-antenna case.However,owing to the coupling of multiple variables,the optimization problems are non-convex and challenging,especially in the later multi-antenna case.The proposed alternating-approximating algorithm(A-A),aided by semi-definite relaxation(SDR)and successive convex approximation(SCA)methods,etc.,successfully overcomes these challenges.We compare the IRS-aided PSR system that optimized by our proposed algorithm to the systems without IRS or PSR,and the systems without joint optimization.The simulation results show that our proposal has a better performance.
基金supported by the National Natural Science Foundation of China (No. 61971190)the Fundamental Research Funds for the Central Universities (No. 2019 MS089)+1 种基金the Hebei Province Natural Science Foundation (No. F2016502062)the Beijing Natural Science Foundation (No. 4164101)。
文摘Intelligent reflecting surface(IRS) is regarded as a promising technology because it can achieve higher passive beamforming gain. In particular, the IRS assisted simultaneous wireless information and power transfer(SWIPT) system can make the information decoding receivers(IDRs) have a higher signal-to-noise ratio(SNR), and the energy harvesting receivers(EHRs) have the guarantee of minimum harvested energy threshold. Motivated by the above,in this paper, we use the power splitting(PS) at the user and introduce artificial noise(AN) into the access point(AP), so that the user in system can harvest energy and decode information simultaneously,further improve the security of user. We jointly optimize the beamforming matrix at AP, the reflection phase shift at IRS and the PS ratio, in order to maximize the user’s achievable secrecy rate, subject to the user’s minimum harvested energy threshold and AP’s transmission power. Due to the introduction of PS ratio, the coupling between variables is increased,and the complexity of the problem is significantly increased. Furthermore, the problem is non-convex, so we propose an efficient algorithm based on Taylor Formula, semi-definite relaxation(SDR) and alternating optimization(AO) to get the solution. Numerical results show that the proposed IRS-SWIPT system with PS and AN achieves significant performance improvement compared with other benchmark scheme.
基金Supported by the Ministerial Level Advanced Research Foudation (111044)
文摘In order to identify all the appropriate system schemes for the compound split systems formed primarily with a four-port mechanical power split device, power transmission characteristics of the compound split systems was analyzed. Considering the structural symmetry and according to the different connection arrangement of the four ports, compound split system was classified into four types. Using black-box modeling method, the generalized models of the speed ratio, the torque ratio and the power split ratio were established. Moreover, a semi-invert diagram was used to distin- guish the different schemes in each type. The characteristics of the speed ratio, the torque ratio and the power split ratio in each domain were also analyzed and compared. Through the semi-invert dia- gram, a selection method based on the rated-power speed ranges in different schemes was presented and all suitable compound split systems were identified, which can be used as references for the scheme selection of this kind of continuously variable power split transmission.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-106A1)。
文摘The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we consider an IRS assisted SR system where the IRS operates under power splitting(PS)mode.We aim at minimizing the IRS power consumption for the ST under the quality of service constraints for both primary and secondary transmissions by optimizing the transmit beamforming,the reflect beamforming and the PS factor.The optimization problem is non-convex.To tackle it,an algorithm is proposed by employing the block coordinate descent,semidefinite relaxation and alternating direction method of multipliers techniques.Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.
基金supported by the Natural Science Foundation of China (51175423)
文摘The deformation compatibility equations and the torque balance equations of star gearing with three branches have been found based on the characteristic that the system composes a closed-loop of power flow. In consideration of the parts manufacturing errors, assembly errors, bearing stiffness and float, the power splitting rate of each star gear and the system were calculated by using the theory of equivalent mesh error. The effects of the errors, float and the bearing stiffness on power splitting were studied. The study provides a useful theoretical guideline for the design of star gearing.
基金Sponsored by the National Natural Science Foundation of China(Grant No.2009AA04Z404)
文摘Based on Newton ' s second law,the bend-torsion-shaft coupling nonlinear dynamic model and equations of power split gear transmission system are established.According to the principle of tooth profile modification,the tooth profile modification is considered as time-varying gear backlash function acting along the line of action.Then the dynamic functions are solved by using Runge-Kutta numerical method.After analyzing the effect of tooth profile modification quantity( TPMQ) and relative tooth profile modification length( TPML) to the nonlinear dynamic characteristics of power split gear transmission,the following conclusions are drawn:1 The TPMQ of a certain stage transmission affects the vibration of its own stage more significantly than the other stage,and the coupling effect between two stages can be ignored usually in the modification design;2 If the first stage TPMLs are less than 0.3,the influence of the first stage TPMLs to the first stage transmission vibration is much more greatly than the influence of the second stage TPMLs to the first stage transmission vibration,or else both the first and second stage TPMLs affect the first stage transmission vibration largely.The same is true for the second stage TPMLs,and the cutoff value is 0.2;3 The TPMQ affects the vibration of power split gear transmission system more principally than the TPML,and should be top-priority in the modification design.
基金funded by the National Natural Science Foundation of China(Grant No.51905219,No.52272368)the Postdoctoral Science Foundation of China(Grant No.2023M731444)+2 种基金the Young Elite Scientists Sponsorship Program by CAST(2020QNRC001)the Key Research and Development Program of Zhenjiang City(No.GY2021001)the Project of Faculty of Agricultural Equipment of Jiangsu University(No.NZXB20210103).
文摘The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement.The multi-clutch configuration usually involves the collaboration of two clutches during the transient mode switching process,thereby substantially elevating control complexity.This study focuses on power split HEVs that integrate multi-clutch mechanisms and investigates how different clutch collaboration manners impact the characteristics of transient mode switching.The powertrain model for the power-split HEV is established utilizing matrix-based methodologies.Through the formulation of clutch torque curves and clutch collaboration models,this research systematically explores the effects of clutch engagement timing and the duration of clutch slipping state on transient mode switching behaviors.Building upon this analysis,an optimization problem for control parameters pertaining to the two collaborative clutches is formulated.The simulated annealing algorithm is employed to optimize these control parameters.Simulation results demonstrate that the clutch collaboration manners have a great influence on the transient mode switching performance.Compared with the pre-calibrated benchmark and the optimal solution derived by the genetic algorithm,the maximal longitudinal jerk and clutch slipping work during the transient mode switching process is reduced obviously with the optimal control parameters derived by the simulated annealing algorithm.The study provides valuable insights for the dynamic coordinated control of the power-split HEVs featuring complex clutch collaboration mechanisms.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the National Natural Science Foundation of China(Grant Nos.51475213&51305167)the Scientific Research Innovation Projects of Jiangsu Province(Grant No.KYLX_1022)
文摘With the combination of engine and two electric machines, the power split device allows higher efficiency of the engine. The operation modes of a power split HEV are analyzed, and the system dynamic model is established for HEV forward simulation and controller design. Considering the fact that the operation modes of the HEV are event-driven and the system dynamics is continuous time-driven for each mode, the structure of the controller is built and described with the hybrid automaton control theory. In this control structure, the mode selection process is depicted by the finite state machine (FSM). The multi-mode switch controller is designed to realize power distribution. Furthermore, the vehicle mode operations are optimized, and the nonlinear model predictive control (NMPC) strategy is applied by implementing dynamic programming (DP) in the finite pre- diction horizon. Comparative simulation results demonstrate that the hybrid control structure is effective and feasible for HEV energy management design. The NMPC optimal strategy is superior in improving fuel economy.
基金the National Natural Science Foundation of China(Grant Nos.51975048,U1764257 and 51705480)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Power flow optimization control,which governs the energy flow among engine,battery,and motor,plays a very important role in plug-in hybrid electric vehicles(PHEVs).Its performance directly affects the fuel economy of PHEVs.For the purpose of improving fuel economy,the electric system including battery and motor will be frequently scheduled,which would affect battery life.Therefore,a multi-objective optimization mechanism taking fuel economy and battery life into account is necessary,which is also a research focus in field of hybrid vehicles.Motivated by this issue,this paper proposes a multi-objective power flow optimization control strategy for a power split PHEV using game theory.Firstly,since the demand power of driver which is necessary for the power flow optimization control,cannot be known in advance,the demand power of driver can be modelled using a Markov chain to obtain predicted demand power.Secondly,based on the predicted demand power,the multi-objective optimization control problem is transformed into a game problem.A novel non-cooperative game model between engine and battery is established,and the benefit function with fuel economy and battery life as the optimization objective is proposed.Thirdly,under the premise of satisfying various constraints,the participants of the above game maximize their own benefit function to obtain the Nash equilibrium,which comprises of optimal power split scheme.Finally,the proposed strategy is verified compared with two baseline strategies,and results show that the proposed strategy can reduce equivalent fuel consumption by about 15%compared with baseline strategy 1,and achieve similar fuel economy while greatly extend battery life simultaneously compared with baseline strategy 2.
基金supported by the Natural Science Foundation of China under Grant No.51175423
文摘In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission.
基金supported by National Natural Science Foundation of China(Grant No.51005017)
文摘Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.
文摘在复合功率分流混合动力系统中,通过离合器对功率分流装置与动力部件进行离合和制动,可以进一步提高动力性和经济性。传统湿式离合器为适应商用车大扭矩需求,需增加摩擦片数量和体积,导致成本上升和拖曳损失,而机械式离合器虽体积小、承载扭矩大,但在超越过程中产生摩擦损失,无法满足混合动力商用车对可控方向锁止和双向非接触自由的需求。设计了一种多模非接触式可控单向离合器,可实现正向锁止、反向锁止以及双向自由三种模式,承载扭矩大同时避免了拖曳和摩擦损失。对多模非接触式可控单向离合器静态和模式切换过程进行了分析,以提高承载扭矩、减小瞬态冲击和实现轻量设计为目标建立了优化模型,提出融合带精英策略的非支配排序遗传算法(Non-dominated sorting genetic algorithmⅡ,NSGA2)、约束有序加权平均算子(Constrained ordered weighted averaging,COWA)和优劣解距离法(Technique for order preference by similarity to ideal solution,TOPSIS)的多目标优化决策方法,与初始方案相比,承载扭矩提升了23.5%、空转角减少了13.7%、关键部件体积减小了0.5%;搭载混合动力专用变速箱进行了台架试验,验证了设计方法的可行性。研究为大扭矩多模非接触式可控单向离合器的设计提供了参考。
文摘为了提高无线通信系统的安全性,基于功率分割型无线携能通信(Power Splitting⁃Simultane⁃ous Wireless Information and Power Transfer,PS⁃SWIPT)模型,提出了一种有源可重构智能表面(Ac⁃tive Reconfigurable Intelligent Surface,ARIS)辅助PS⁃SWIPT系统(ARIS⁃PS⁃SWIPT)的安全传输方案。综合考虑ARIS⁃PS⁃SWIPT系统的能量效率和安全性,构造了安全能效最大化问题,通过联合优化基站的波束成形向量、ARIS的反射系数矩阵,以及合法用户的功率分割比值,提升ARIS⁃PS⁃SWIPT系统的安全能效。由于所构建的优化问题为非凸问题,利用交替优化(Alternating Optimiza⁃tion,AO)算法将原问题分解为3个子问题,并进一步通过半正定松弛(Semi⁃Definite Relaxation,SDR)和Dinkelbach方法获得子问题的优化解。仿真结果表明,ARIS⁃PS⁃SWIPT方案在安全能效方面优于PRIS辅助PS⁃SWIPT(PRIS⁃PS⁃SWIPT)方案和放大转发辅助PS⁃SWIPT(AF⁃PS⁃SWIPT)方案,且所提算法相较于遗传算法(Genetic Algorithm,GA),对求解该类问题具备更高的适应性,并且获得了更高的安全能效。