To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional ...The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional hydrocarbon reservoirs and associated hazards.Many coupling techniques have been developed to include the effects of fluid flow in the discrete element method(DEM),and the techniques have been applied to a variety of geomechanical problems.Although these coupling methods have been successfully applied in various engineering fields,no single fluid/DEM coupling method is universal due to the complexity of engineering problems and the limitations of the numerical methods.For researchers and engineers,the key to solve a specific problem is to select the most appropriate fluid/DEM coupling method among these modeling technologies.The purpose of this paper is to give a comprehensive review of fluid flow/DEM coupling methods and relevant research.Given their importance,the availability or unavailability of best practice guidelines is outlined.The theoretical background and current status of DEM are introduced first,and the principles,applications,and advantages and disadvantages of different fluid flow/DEM coupling methods are discussed.Finally,a summary with speculation on future development trends is given.展开更多
This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that ...This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that are governed by Stokes equations system.This technique is constructed by a local pressure projection which is extremely simple,yet effective,to eliminate the poor or even non-convergence as well as the instability of equal-order mixed polygonal technique.In this research,some numerical examples of incompressible Stokes fluid flow that is coded and programmed by MATLAB will be presented to examine the effectiveness of the proposed stabilised method.展开更多
In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time g...In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time.展开更多
Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio...Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process.展开更多
An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal str...An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.展开更多
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as th...A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction,step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.展开更多
This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress...This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.展开更多
The governing equations as well as boundary land initial conditions for nonlinear dynamic response problems of viscous fluid-saturated biphase porous medium model, based on mixture theory, are presented. With Galerkin...The governing equations as well as boundary land initial conditions for nonlinear dynamic response problems of viscous fluid-saturated biphase porous medium model, based on mixture theory, are presented. With Galerkin weighted residual method the corresponding nonlinear dynamic penalty finite element equation, in which the dependencies of volume fraction and permeation coefficients an deformation are included, is obtained. The iteration solution method of the nonlinear system equation is also discussed. As a numerical example, the dynamic response of a porous medium column under impulsive loading action is analyzed with the developed finite element program. The numerical results demonstrate the efficiency and correctness of the method.展开更多
A boundary element method is presented for the coupled motionanalysis of structural vibration with small-amplitude fluid sloshingin two-dimensional space. The linearized Navier-Stokes equations areconsidered in freque...A boundary element method is presented for the coupled motionanalysis of structural vibration with small-amplitude fluid sloshingin two-dimensional space. The linearized Navier-Stokes equations areconsidered in frequency domain and transformed into boundary integralequations. An appropriate fundamental solution for the Helmholtzequation with pure imaginary constant is found. The condition ofzero-stress is imposed on the free surface, and non-slip condition offluid particles is Imposed on the walls of the container. For rigidmotion models, the expressions for added mass and Added damping tothe structural motion equations are obtained. Some typical numericalexamples are Presented.展开更多
In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the line...In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the linearized version of the viscoelastic UCM model. The L2 least-squares functional involves the residuals of each equation multiplied by proper weights. The corresponding homogeneous functional is equivalent to a natural norm. The error estimates of the finite element solution are analyzed when the conforming piecewise polynomial elements are used for the unknowns.展开更多
This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on t...This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.展开更多
In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an al...In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method.展开更多
Based on linearized 2-D Navier-Stokes equation, a Laplacetransform-boundary element coupling method for viscousfluid-structure impact analysis is proposed. Under assumption ofincompressibility for the fluid, the corre...Based on linearized 2-D Navier-Stokes equation, a Laplacetransform-boundary element coupling method for viscousfluid-structure impact analysis is proposed. Under assumption ofincompressibility for the fluid, the corresponding equivalentboundary integral equation in terms of the potential function andstream function is first established by Lamb's transform in theLaplace transform domain.展开更多
Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The b...Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified cou- ple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.展开更多
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex...A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.展开更多
A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be ...A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be applied to a variety of velocity potential problems. The present paper, however, focused on its application to the problem of water entry of a wedge with varying speed. The continuity of the velocity achieved herein is particularly important for this kind of nonlinear free surface flow problem, because when the time stepping method is used, the free surface is updated through the velocity obtained at each node and the accuracy of the velocity is therefore crucial. Calculation was made for a case when the distance S that the wedge has travelled and time t follow the relationship s=Dtα, where D and α are constants, which is found to lead to a self similar flow field when the effect due to gravity is ignored.展开更多
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti...In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.展开更多
The mathematical model and the numerical simulation for the transfer of coal bed methane were established based on the combination of the porous flow theory and elastic plastic mechanics theory and the numerical solut...The mathematical model and the numerical simulation for the transfer of coal bed methane were established based on the combination of the porous flow theory and elastic plastic mechanics theory and the numerical solution was given, together with the consideration of the fluid solid interaction between the coal bed gas and coal framework. Then the dispersion for the equation of gas porous flow and coal seam distortion was carried out and the functional analysis equation was obtained. Finally, the coupling solution was educed and calculated by finite element method(FEM) on a model example.展开更多
The stream-line finite element method proposed by Luo and Tanner has been improvedand used to simulate the extrudate swell of the so called Boger fluid.The element withdiscontinuous pressure proves to be a successful ...The stream-line finite element method proposed by Luo and Tanner has been improvedand used to simulate the extrudate swell of the so called Boger fluid.The element withdiscontinuous pressure proves to be a successful choice and superior to that with continuous pressureIt is revealed that the visccsity of Newtonian solvent of the Boger fluid has a great influence on thecalculated swelling.The Weissenberg number is suggested to take the place of recoverable shear strainin Tanner′s formula to estimate the swelling of the Boger or Oldroyd-B fluids.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41772286 and 42077247)the Fundamental Research Funds for the Central Universities, China
文摘The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional hydrocarbon reservoirs and associated hazards.Many coupling techniques have been developed to include the effects of fluid flow in the discrete element method(DEM),and the techniques have been applied to a variety of geomechanical problems.Although these coupling methods have been successfully applied in various engineering fields,no single fluid/DEM coupling method is universal due to the complexity of engineering problems and the limitations of the numerical methods.For researchers and engineers,the key to solve a specific problem is to select the most appropriate fluid/DEM coupling method among these modeling technologies.The purpose of this paper is to give a comprehensive review of fluid flow/DEM coupling methods and relevant research.Given their importance,the availability or unavailability of best practice guidelines is outlined.The theoretical background and current status of DEM are introduced first,and the principles,applications,and advantages and disadvantages of different fluid flow/DEM coupling methods are discussed.Finally,a summary with speculation on future development trends is given.
基金The authors would like to present our gratitude to the Flemish Government financially supporting for the VLIR-OUS TEAM Project,VN2017TEA454A103‘An innovative solution to protect Vietnamese coastal riverbanks from floods and erosion’.
文摘This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that are governed by Stokes equations system.This technique is constructed by a local pressure projection which is extremely simple,yet effective,to eliminate the poor or even non-convergence as well as the instability of equal-order mixed polygonal technique.In this research,some numerical examples of incompressible Stokes fluid flow that is coded and programmed by MATLAB will be presented to examine the effectiveness of the proposed stabilised method.
基金The work is supported by the Guangxi Natural Science Foundation[Grant Numbers 2018GXNSFBA281020,2018GXNSFAA138121]the Doctoral Starting up Foundation of Guilin University of Technology[Grant Number GLUTQD2016044].
文摘In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time.
基金National Natural Science Foundation of China(U2004176,22008055)Technology Research Project of Henan Province(232102240034)are gratefully acknowledged.
文摘Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process.
基金the National Metal and Materials Technology Centerthe Thailand Research Fund+1 种基金the Office of Higher Education Commissionthe Chulalongkorn University for supporting the present research
文摘An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.
文摘A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction,step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.
文摘This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.
文摘The governing equations as well as boundary land initial conditions for nonlinear dynamic response problems of viscous fluid-saturated biphase porous medium model, based on mixture theory, are presented. With Galerkin weighted residual method the corresponding nonlinear dynamic penalty finite element equation, in which the dependencies of volume fraction and permeation coefficients an deformation are included, is obtained. The iteration solution method of the nonlinear system equation is also discussed. As a numerical example, the dynamic response of a porous medium column under impulsive loading action is analyzed with the developed finite element program. The numerical results demonstrate the efficiency and correctness of the method.
文摘A boundary element method is presented for the coupled motionanalysis of structural vibration with small-amplitude fluid sloshingin two-dimensional space. The linearized Navier-Stokes equations areconsidered in frequency domain and transformed into boundary integralequations. An appropriate fundamental solution for the Helmholtzequation with pure imaginary constant is found. The condition ofzero-stress is imposed on the free surface, and non-slip condition offluid particles is Imposed on the walls of the container. For rigidmotion models, the expressions for added mass and Added damping tothe structural motion equations are obtained. Some typical numericalexamples are Presented.
文摘In this paper, a least-squares finite element method for the upper-convected Maxell (UCM) fluid is proposed. We first linearize the constitutive and momentum equations and then apply a least-squares method to the linearized version of the viscoelastic UCM model. The L2 least-squares functional involves the residuals of each equation multiplied by proper weights. The corresponding homogeneous functional is equivalent to a natural norm. The error estimates of the finite element solution are analyzed when the conforming piecewise polynomial elements are used for the unknowns.
基金supported by the National Natural Science Foundation of China (10771134).
文摘This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.
文摘In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method.
基金the National Defence Foundation of Science & Technology of China (No.J14.8.1.JW0515)
文摘Based on linearized 2-D Navier-Stokes equation, a Laplacetransform-boundary element coupling method for viscousfluid-structure impact analysis is proposed. Under assumption ofincompressibility for the fluid, the corresponding equivalentboundary integral equation in terms of the potential function andstream function is first established by Lamb's transform in theLaplace transform domain.
文摘Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified cou- ple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.
文摘A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.
文摘A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be applied to a variety of velocity potential problems. The present paper, however, focused on its application to the problem of water entry of a wedge with varying speed. The continuity of the velocity achieved herein is particularly important for this kind of nonlinear free surface flow problem, because when the time stepping method is used, the free surface is updated through the velocity obtained at each node and the accuracy of the velocity is therefore crucial. Calculation was made for a case when the distance S that the wedge has travelled and time t follow the relationship s=Dtα, where D and α are constants, which is found to lead to a self similar flow field when the effect due to gravity is ignored.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Reaearch Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
文摘The mathematical model and the numerical simulation for the transfer of coal bed methane were established based on the combination of the porous flow theory and elastic plastic mechanics theory and the numerical solution was given, together with the consideration of the fluid solid interaction between the coal bed gas and coal framework. Then the dispersion for the equation of gas porous flow and coal seam distortion was carried out and the functional analysis equation was obtained. Finally, the coupling solution was educed and calculated by finite element method(FEM) on a model example.
基金Project supported by the National Natural Science Foundation of China and the Natural Science Foundationof Zhejiang Province
文摘The stream-line finite element method proposed by Luo and Tanner has been improvedand used to simulate the extrudate swell of the so called Boger fluid.The element withdiscontinuous pressure proves to be a successful choice and superior to that with continuous pressureIt is revealed that the visccsity of Newtonian solvent of the Boger fluid has a great influence on thecalculated swelling.The Weissenberg number is suggested to take the place of recoverable shear strainin Tanner′s formula to estimate the swelling of the Boger or Oldroyd-B fluids.