This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation o...This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation of random transition function. Finally, we give the sufficient condition for the existence of ergodic potential kernel for homogeneous q- processes in random environments.展开更多
We study potential operators and,more generally,Laplace-Stieltjes and Laplace type multipliers associated with the twisted Laplacian.We characterize those 1 ≤ p,q ≤ ∞,for which the potential operators are Lp—Lq bo...We study potential operators and,more generally,Laplace-Stieltjes and Laplace type multipliers associated with the twisted Laplacian.We characterize those 1 ≤ p,q ≤ ∞,for which the potential operators are Lp—Lq bounded.This result is a sharp analogue of the classical Hardy-Littlewood-Sobolev fractional integration theorem in the context of special Hermite expansions.We also investigate Lp mapping properties of the Laplace-Stieltjes and Laplace type multipliers.展开更多
基金Supported by the National Natural Science Foundation of China (10371092)
文摘This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation of random transition function. Finally, we give the sufficient condition for the existence of ergodic potential kernel for homogeneous q- processes in random environments.
基金supported by the National Science Centre of Poland within the project Opus 2013/09/B/ST1/02057
文摘We study potential operators and,more generally,Laplace-Stieltjes and Laplace type multipliers associated with the twisted Laplacian.We characterize those 1 ≤ p,q ≤ ∞,for which the potential operators are Lp—Lq bounded.This result is a sharp analogue of the classical Hardy-Littlewood-Sobolev fractional integration theorem in the context of special Hermite expansions.We also investigate Lp mapping properties of the Laplace-Stieltjes and Laplace type multipliers.