We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between e...We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between existing measurements and evaluations of this cross-section.Using an unfolding iteration method,^(63)Cu(γ,n)data were obtained with an uncertainty of less than 4%,and the inconsistencies between the available experimental data were discussed.Theγ-ray strength function of^(63)Cu(γ,n)was successfully extracted as an experimental constraint.We further calculated the cross-section of the radiative neutron capture reaction^(62)Cu(n,γ)using the TALYS code.Our calculation method enables the extraction of(n,γ)cross-sections for unstable nuclides.展开更多
In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues...In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues of cross-sectional dependence, and introduces the concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily paid to spatial and factor approaches for modeling cross-sectional dependence for both linear and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude with some speculations on future research directions.展开更多
The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential syn...The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement展开更多
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute...Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications.展开更多
Often in longitudinal studies, some subjects complete their follow-up visits, but others miss their visits due to various reasons. For those who miss follow-up visits, some of them might learn that the event of intere...Often in longitudinal studies, some subjects complete their follow-up visits, but others miss their visits due to various reasons. For those who miss follow-up visits, some of them might learn that the event of interest has already happened when they come back. In this case, not only are their event times interval-censored, but also their time-dependent measurements are incomplete. This problem was motivated by a national longitudinal survey of youth data. Maximum likelihood estimation (MLE) method based on expectation-maximization (EM) algorithm is used for parameter estimation. Then missing information principle is applied to estimate the variance-covariance matrix of the MLEs. Simulation studies demonstrate that the proposed method works well in terms of bias, standard error, and power for samples of moderate size. The national longitudinal survey of youth 1997 (NLSY97) data is analyzed for illustration.展开更多
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent ...The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent access to intra-daily high-frequency data for two of the most liquid contracts at the Nord Pool exchange has made it possible to apply new and promising methods for analyzing volatility and correlation. The concepts of realized volatility and realized correlation are applied, and this study statistically describes the distribution (both distributional properties and temporal dependencies) of electricity forward data from 2005 to 2009. The main findings show that the logarithmic realized volatility is approximately normally distributed, while realized correlation seems not to be. Further, realized volatility and realized correlation have a long-memory feature. There also seems to be a high correlation between realized correlation and volatilities and positive relations between trading volume and realized volatility and between trading volume and realized correlation. These results are to a large extent consistent with earlier studies of stylized facts of other financial and commodity markets.展开更多
基金supported by the National Key Research and Development Program(Nos.2023YFA1606901 and 2022YFA1602400)National Natural Science Foundation of China(Nos.U2230133,12275338,and 12388102)Open Fund of the CIAE Key Laboratory of Nuclear Data(No.JCKY2022201C152).
文摘We present new data on the^(63)Cu(γ,n)cross-section studied using a quasi-monochromatic and energy-tunableγbeam produced at the Shanghai Laser Electron Gamma Source to resolve the long-standing discrepancy between existing measurements and evaluations of this cross-section.Using an unfolding iteration method,^(63)Cu(γ,n)data were obtained with an uncertainty of less than 4%,and the inconsistencies between the available experimental data were discussed.Theγ-ray strength function of^(63)Cu(γ,n)was successfully extracted as an experimental constraint.We further calculated the cross-section of the radiative neutron capture reaction^(62)Cu(n,γ)using the TALYS code.Our calculation method enables the extraction of(n,γ)cross-sections for unstable nuclides.
基金Supported by the National Natural Science Foundation of China(71131008(Key Project)and 71271179)
文摘In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues of cross-sectional dependence, and introduces the concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily paid to spatial and factor approaches for modeling cross-sectional dependence for both linear and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude with some speculations on future research directions.
基金Supported by National Key Technology R&D Program(No.2011BAG03B03)
文摘The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement
基金National Natural Science Foundation of China(No.41801379)Fundamental Research Funds for the Central Universities(No.2019B08414)National Key R&D Program of China(No.2016YFC0401801)。
文摘Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications.
文摘Often in longitudinal studies, some subjects complete their follow-up visits, but others miss their visits due to various reasons. For those who miss follow-up visits, some of them might learn that the event of interest has already happened when they come back. In this case, not only are their event times interval-censored, but also their time-dependent measurements are incomplete. This problem was motivated by a national longitudinal survey of youth data. Maximum likelihood estimation (MLE) method based on expectation-maximization (EM) algorithm is used for parameter estimation. Then missing information principle is applied to estimate the variance-covariance matrix of the MLEs. Simulation studies demonstrate that the proposed method works well in terms of bias, standard error, and power for samples of moderate size. The national longitudinal survey of youth 1997 (NLSY97) data is analyzed for illustration.
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
文摘The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent access to intra-daily high-frequency data for two of the most liquid contracts at the Nord Pool exchange has made it possible to apply new and promising methods for analyzing volatility and correlation. The concepts of realized volatility and realized correlation are applied, and this study statistically describes the distribution (both distributional properties and temporal dependencies) of electricity forward data from 2005 to 2009. The main findings show that the logarithmic realized volatility is approximately normally distributed, while realized correlation seems not to be. Further, realized volatility and realized correlation have a long-memory feature. There also seems to be a high correlation between realized correlation and volatilities and positive relations between trading volume and realized volatility and between trading volume and realized correlation. These results are to a large extent consistent with earlier studies of stylized facts of other financial and commodity markets.