期刊文献+
共找到7,426篇文章
< 1 2 250 >
每页显示 20 50 100
Ambient-Stable Polymeric Nitrogen Achieved through Multi-Stage Computational Design
1
作者 Jiani Lin Jianfu Li +2 位作者 Yong Liu Jianan Yuan Xiaoli Wang 《Chinese Physics Letters》 2025年第7期298-309,共12页
The four-decade quest for synthesizing ambient-stable polymeric nitrogen,a promising high-energy-density material,remains an unsolved challenge in materials science.We develop a multi-stage computational strategy empl... The four-decade quest for synthesizing ambient-stable polymeric nitrogen,a promising high-energy-density material,remains an unsolved challenge in materials science.We develop a multi-stage computational strategy employing density functional tight-binding-based rapid screening combined with density functional theory refinement and global structure searching,effectively bridging computational efficiency with quantum accuracy.This integrated approach identifies four novel polymeric nitrogen phases(Fddd,P3221,I4m2,and𝑃P6522)that are thermodynamically stable at ambient pressure.Remarkably,the helical𝑃6522 configuration demonstrates exceptional thermal resilience up to 1500 K,representing a predicted polymeric nitrogen structure that maintains stability under both atmospheric pressure and high-temperature extremes.Our methodology establishes a paradigm-shifting framework for the accelerated discovery of metastable energetic materials,resolving critical bottlenecks in theoretical predictions while providing experimentally actionable targets for polymeric nitrogen synthesis. 展开更多
关键词 ambient stable polymeric nitrogen polymeric nitrogen density functional tight binding density functional theory density functional theory refinement global structure searching global structure searchingeffectively bridging computational efficiency quantum accuracythis
原文传递
Harnessing S-scheme junctions for enhanced CO_(2) photoreduction:molecular bonding of copper(Ⅱ)complexes onto K-doped polymeric carbon nitride via microwave heating 被引量:2
2
作者 Ming-Yu Heng Hong-Lei Shao +5 位作者 Jie-Ting Sun Qian Huang Shu-Ling Shen Guang-Zhi Yang Yu-Hua Xue Shu-Ning Xiao 《Rare Metals》 2025年第2期1108-1121,共14页
Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2)... Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2) solar reduction due to its excellent visible light response,suitable conduction band position,and good cost-effectiveness.However,the amorphous nature and low conductivity of PCN limit its photocatalytic efficiency by leading to low carrier concentrations and facile electron–hole recombination during photocatalysis.Addressing this bottleneck,in this study,potassium-doped PCN(KPCN)/copper(Ⅱ)-complexed bipyridine hydroxyquinoline carboxylic acid(Cu(Ⅱ)(bpy)(H_(2)hqc))composite catalysts were synthesized through a multistep microwave heating process.In the composite,the formation of an S-scheme junction facilitates the enrichment of more negative electrons on the conduction band of KPCN via intermolecular electron–hole recombination between Cu(Ⅱ)(bpy)(H_(2)hqc)(CuPyQc)and KPCN,thereby promoting efficient photoreduction of CO_(2) to CO.Microwave heating enhances the amidation reaction between these two components,achieving the immobilization of homogeneous molecular catalysts and forming amidation chemical bonds that serve as key channels for the S-scheme charge transfer.This work not only presents a new PCN-based catalytic system for CO_(2) reduction applications,but also offers a novel microwave-practical approach for immobilizing homogeneous catalysts. 展开更多
关键词 Photocatalytic CO_(2)reduction Microwave synthesis polymeric carbon nitride Amide bond Sscheme
原文传递
Roles of extracellular polymeric substances in arsenic accumulation and detoxification by cell wall intact and mutant strains of Chlamydomonas reinhardtii 被引量:1
3
作者 Sadiq Naveed Qingnan Yu +3 位作者 Katarzyna Szewczuk-Karpisz Chunhua Zhang Shafeeq-Ur Rahman Ying Ge 《Journal of Environmental Sciences》 2025年第6期142-154,共13页
Arsenic(As)pollution seriously threatens human and ecological health.Microalgal cell wall and extracellular polymeric substances(EPS)are known to interactwith As,but their roles in the As resistance,accumulation and s... Arsenic(As)pollution seriously threatens human and ecological health.Microalgal cell wall and extracellular polymeric substances(EPS)are known to interactwith As,but their roles in the As resistance,accumulation and speciation inmicroalgae remain unclear.Here,we used two strains of Chlamydomonas reinhardtii,namely CC-125(wild type)and CC-503(cell walldeficientmutant),to examine the algal growth,EPS synthesis,As adsorption,absorption and transformation under 10–1000μg/L As(III)and As(V)treatments for 96 h.In both strains,the As absorption increased after the EPS removal,but the growth,As adsorption,and transformation of C.reinhardtii declined.The CC-125 strain was more tolerant to As stress and more efficient in EPS production,As accumulation,and redox transformation than CC-503,irrespective of EPS presence or absence.Three-dimension excitation-emission matrix(3DEEM)and attenuated total reflectance infrared spectroscopy(ATR-IR)analyses showed that As was bound with functional groups in the EPS and cell wall,such as-COOH,NH and-OH in proteins,polysaccharides and amino acids.Together,this study demonstrated that EPS and cell wall acted as barriers to lower the As uptake by C.reinhardtii.However,the cell wall mutant strain wasmore susceptible to As toxicity due to lower EPS induction and higher As absorption. 展开更多
关键词 Extracellular polymeric substances Cell wall ARSENIC ACCUMULATION Speciation MICROALGAE
原文传递
Polymeric nanocarriers for therapeutic gene delivery 被引量:1
4
作者 Jiayuan Zhang Xinyu Yang +3 位作者 Zhichao Chang Wenwei Zhu Yuhua Ma Haisheng He 《Asian Journal of Pharmaceutical Sciences》 2025年第1期1-25,共25页
The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers... The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery. 展开更多
关键词 polymeric nanocarriers Therapeutic gene delivery Cationic polymers DISEASES Transfection efficiency STRATEGIES
暂未订购
Molecular dynamics insights into wax formation-How polymeric inhibitors shape crude oil flow
5
作者 Wyclif Kiyingi Ji-Xiang Guo +1 位作者 Rui-Ying Xiong Chen-Hao Gao 《Petroleum Science》 2025年第5期2233-2245,共13页
Molecular-level interactions between polymeric inhibitors and wax crystals are essential for mitigating wax deposition in crude oils,a major operational and environmental challenge.This study investigates the mechanis... Molecular-level interactions between polymeric inhibitors and wax crystals are essential for mitigating wax deposition in crude oils,a major operational and environmental challenge.This study investigates the mechanisms by which specific inhibitors target wax crystals to prevent aggregation.Extracted wax and inhibitor were characterized using gas chromatography,X-ray diffraction,and spectroscopy to determine the molecular structures.The wax primarily comprised of straight-chain nC28 alkanes,while the inhibitor was an ethylene/vinyl acetate copolymer.Rheological tests demonstrated a reduced gelation point upon inhibitor addition.Molecular dynamics(MD)simulations,performed using the COMPASS II force field,revealed interactions at the molecular level.Structural validation of molecules was done through comparative analysis of the experimental infrared and simulated vibrational analysis spectra whereas that of the rhombohedral wax crystal was achieved using the Pawley method,yielding a Profile R-factor of 9.26%.Morphological studies revealed five symmetrically unique facets,with the(110)plane being the fastestgrowing due to its inter-planar distance and attachment energy(-157.25 kcal/mol).Adsorption energy calculations(-180 kcal/mol)confirmed that the inhibitor effectively disrupted crystal growth on the surface by adsorbing its polar section onto the wax surface while repelling the non-polar groups,thereby reducing waxaggregation. 展开更多
关键词 Molecular dynamics COLLOIDS Crystal growth Adsorption energy polymeric inhibitor
原文传递
Recent advances in electrochemiluminescence based on polymeric luminophores
6
作者 Sijia Zhou Tianyi Zhou +5 位作者 Yuhua Hou Wang Li Yanfei Shen Songqin Liu Kaiqing Wu Yuanjian Zhang 《Chinese Chemical Letters》 2025年第5期109-123,共15页
Developing efficient,non-toxic,and low-cost emitters is a key issue in promoting the applications of electrochemiluminescence(ECL).Among varied ECL emitters,polymeric emitters are attracting dramatically increasing in... Developing efficient,non-toxic,and low-cost emitters is a key issue in promoting the applications of electrochemiluminescence(ECL).Among varied ECL emitters,polymeric emitters are attracting dramatically increasing interest due to tunable structure,large surface area,brilliant transfer capability,and sustainable raw materials.In this review,we present a general overview of recent advances in developing polymeric luminophores,including their structural and synthetic methodologies.Methods rooted in straightforward unique structural modulation have been comprehensively summarized,aiming at enhancing the efficiency of ECL along with the underlying kinetic mechanisms.Moreover,as several conjugated polymers were just discovered in recent years,promising prospects and perspectives have also been deliberated.The insight of this review may provide a new avenue for helping develop advanced conjugated polymer ECL emitters and decode ECL applications. 展开更多
关键词 ELECTROCHEMILUMINESCENCE polymeric luminophores MECHANISMS EFFICIENCY
原文传递
Photoswitchable dual-color fluorescent polymeric nanoparticles for self-erased time-resolved information encryption and anti-counterfeiting
7
作者 Hong Wang Yong Tian +4 位作者 Tiancheng Wu Shun He Jiaxi Cui Jian Chen Xudong Chen 《Chinese Chemical Letters》 2025年第7期468-472,共5页
Photoswitchable fluorescent polymeric nanoparticles were widely concerned because of their excellent features including the flexible design,easy preparation and functionalization,and thus exhibited great application p... Photoswitchable fluorescent polymeric nanoparticles were widely concerned because of their excellent features including the flexible design,easy preparation and functionalization,and thus exhibited great application potential in information encryption,anti-counterfeiting,but remained challenging in improving the security.Herein,we described a self-erased time-resolved information encryption via using photoswitchable dual-color fluorescent polymeric nanoparticles(PDFPNs)containing two fluorescence dyes(blue and red)and photochromic spiroxazine derivatives.In view of the different thermo-induced isomerization rates of photochromic spiroxazine derivatives in different flexible substrates,the decoloration rate of PDFPNs can be programmatically tuned by regulating ratio between rigid polymer and flexible polymer.Therefore,after ultraviolet light(UV)irradiation,correct information could only be recognized in preestablished time during the self-erased process.Our results indicated that PDFPNs exhibited fast photo-responsibility(2 min),high fluorescence contrast,well-pleasing photo-reversibility(>20 times),and programmable thermo-responsiveness(24 s-6 h).We thus demonstrated their application in the selferased time-resolved information encryption and anti-counterfeiting with high security. 展开更多
关键词 Photoswitchable dual-color fluorescence polymeric nanoparticles FRET Self-erasure Time-resolved information encryption
原文传递
Polymeric micelle-hydrogel composites design for biomedical applications
8
作者 Hongyi Li Huiyun Wen +7 位作者 He Zhang Jin Li Xiang Cao Jiaqing Zhang Yutao Zheng Saipeng Huang Weiming Xue Xiaojun Cai 《Chinese Chemical Letters》 2025年第5期74-81,共8页
Designing advanced hydrogels with controlled mechanical properties,drug delivery manner and multifunctional properties will be beneficial for biomedical applications.However,the further development of hydrogel is limi... Designing advanced hydrogels with controlled mechanical properties,drug delivery manner and multifunctional properties will be beneficial for biomedical applications.However,the further development of hydrogel is limited due to its poor mechanical property and structural diversity.Hydrogels combined with polymeric micelles to obtain micelle-hydrogel composites have been designed for synergistic enhancement of each original properties.Incorporation polymeric micelles into hydrogel networks can not only enhance the mechanical property of hydrogel,but also expand the functionality of hydrogel.Recent advances in polymeric micelle-hydrogel composites are herein reviewed with a focus on three typical micelle incorporation methods.In this review,we will also highlight some emerging biomedical applications in developing micelle-hydrogel composite with multiple functionalities.In addition,further development and application prospects of the micelle-hydrogels composites have also been addressed. 展开更多
关键词 polymeric micelle Hydrogel composites Incorporation methods Biomedical applications Local tumor treatment Tissue engineering
原文传递
Design-simulation-manufacturing-assessment framework for geometric optimization of polymeric heart valves toward enhanced durability
9
作者 Tianle Xu Zihan Zhu +3 位作者 Yunhan Cai Shunping Chen Jia Guo Shengzhang Wang 《Bio-Design and Manufacturing》 2025年第5期835-846,I0067-I0068,共14页
Owing to their excellent biocompatibility and potential for durability enhancement,polymeric heart valves(PHVs)are emerging as a promising alternative to traditional prostheses.Unlike conventional materials,PHVs can b... Owing to their excellent biocompatibility and potential for durability enhancement,polymeric heart valves(PHVs)are emerging as a promising alternative to traditional prostheses.Unlike conventional materials,PHVs can be manufactured under precise design criteria,enabling targeted performance improvements.This study introduces a geometric optimization strategy for enhancing the durability of PHVs.The finite element method(FEM)is combined with a dip-molding technique to develop a novel polymeric aortic valve with improved mechanical properties.The tri-leaflet geometry is parameterized using B-spline curves,and the maximum stress in the valve is reduced from 2.4802 to 1.7773 MPa using a multiobjective optimization algorithm NSGA-II(non-dominated sorting genetic algorithm II).Pre-optimized and optimized valve prototypes were fabricated via dip-molding and evaluated during pulsatile-flow tests and accelerated wear tests.The optimized design meets the ISO 5840 standards,with an effective orifice area of 2.019 cm^(2),a regurgitant fraction of 5.693%,and a transvalvular pressure gradient of 7.576 mmHg.Moreover,the optimized valve maintained its structural integrity and functionality over 14 million cycles of the accelerated wear test,whereas the unoptimized valve failed after two million cycles.These findings confirm that the FEM-based geometric optimization method enhances both the mechanical performance and durability of PHVs. 展开更多
关键词 polymeric heart valve DURABILITY Optimization Finite element method(FEM) Dip-molding
暂未订购
Polymeric carbon nitride for photocatalytic overall water splitting:Modification strategies and recent advances
10
作者 Anna Dai Zhenxiong Huang +3 位作者 Li Tian Zheng Zhang Xiangjiu Guan Liejin Guo 《Chinese Journal of Structural Chemistry》 2025年第8期88-100,共13页
Solar-driven photocatalytic overall water splitting(POWS)has emerged as a sustainable pathway for hydrogen production,yet faces intrinsic challenges in developing robust catalysts that balance efficiency,stability,and... Solar-driven photocatalytic overall water splitting(POWS)has emerged as a sustainable pathway for hydrogen production,yet faces intrinsic challenges in developing robust catalysts that balance efficiency,stability,and cost-effectiveness.Polymeric carbon nitride(PCN)represents as a promising metal-free photocatalyst for hydrogen production due to the merits of unique electronic structure and exceptional thermal stability.Nevertheless,limited by rapid charge recombination and insufficient oxidative capability,little success has been achieved on pristine PCN photocatalyst in POWS.In this context,recent advances have demonstrated multi-dimensional modification strategies for improving POWS performance.Based on the fundamental principles of photocatalysis,this review discusses the advantages and challenges of PCN-based photocatalysts in POWS systems.With critical evaluation on one-step excitation systems and Z-scheme two-step excitation systems,modification strategies including crystallinity engineering,supramolecular precursor design,cocatalyst modulation,and construction of PCN-based heterojunctions and homojunctions were highlighted by introducing representative advances in POWS application over the past five years.Future perspectives for PCN-based photocatalysts are proposed,aiming to provide new insights for the design of advanced photocatalytic system for efficient POWS. 展开更多
关键词 PHOTOCATALYSIS Overall water splitting Hydrogen production polymeric carbon nitride Modification strategies
原文传递
Polymeric micelles:“magic bullets”for cancer treatment
11
作者 Yue Gao Meihong Zhang +6 位作者 Qian Chen Yuxin Lin Chuanbin Wu Xin Pan Ling Guo Tze Ning Hiew Zhengwei Huang 《Bio-Design and Manufacturing》 2025年第6期1103-1125,I0046-I0076,共54页
Nanocarriers are an efficient drug delivery tool used for cancer treatment.Among various nanocarriers,polymeric micelles(PMs)have garnered attention in recent years due to their excellent properties,including improved... Nanocarriers are an efficient drug delivery tool used for cancer treatment.Among various nanocarriers,polymeric micelles(PMs)have garnered attention in recent years due to their excellent properties,including improved solubility of insoluble drugs,enhanced targeting and accumulation of drugs at the cancer site,increased sensitivity of cancer cells to chemotherapeutic drugs,and prolonged circulation time.This review summarizes the preparation methods,characterization,advantages,and classification of PMs as drug delivery systems for oncology therapeutics.In particular,the self-assembly mechanisms of active ingredients into PMs,the anticancer activities of PMs associated with various cell death pathways,and the research cases of PMs as drug delivery vehicles in cancer therapy are described.Finally,this review summarizes the status of the clinical trials and real-world applications of PMs and briefly analyzes the reasons for the unsatisfactory commercialized states.This review supports further research on the role of PMs as nanocarriers in cancer therapy and adds insights for the successful clinical translation of PM-based products. 展开更多
关键词 Cancer therapy polymeric micelles Drug delivery systems Cell death pathways Clinical application
在线阅读 下载PDF
Research Progress in the Polymeric Nitrogen with High Energy Density
12
作者 Jie Zhang Guo Chen +2 位作者 Chengfeng Zhang Yuxuan Xu Xianlong Wang 《Chinese Physics Letters》 2025年第5期69-79,共11页
Polymeric nitrogen is a potential high-energy-density material with the advantages of high energy density, easy availability of raw materials, and non-pollution. The design and synthesis of polymeric nitrogen are impo... Polymeric nitrogen is a potential high-energy-density material with the advantages of high energy density, easy availability of raw materials, and non-pollution. The design and synthesis of polymeric nitrogen are important in the research field of energetic materials. The cubic gauche nitrogen was successfully synthesized at high pressure in the diamond anvil cell, which stimulated the theoretical and experimental investigations. To date, several hundred kinds of polymeric nitrogen have been reported. This review introduces the progressive development of polymeric nitrogen with high energy density, the challenges faced by the synthesized polymeric nitrogen under high-pressure,and the importance to improve the stability of polymeric nitrogen at ambient pressure. Furthermore, alternative methods for synthesizing polymeric nitrogen under moderate conditions are also presented. In this field, more efforts are needed to develop strategies for stabilizing more polymeric nitrogen to ambient conditions, especially the stability of free surfaces. 展开更多
关键词 polymeric nitrogen cubic gauche nitrogen theoretical experimental investigations energetic materials raw materials design synthesis high energy density diamond anvil cell
原文传递
Microbial community and dynamic changes of extracellular polymeric substances in relation to plastisphere of disposable surgical masks in natural aquatic environment
13
作者 Ling ZHANG Yuxin ZHOU +6 位作者 Zixian ZHU Feifei YAN Luxi TAN Chunyan WEI Zihao WANG Qingfeng CHEN Ying ZHANG 《Journal of Oceanology and Limnology》 2025年第2期502-514,共13页
In the context of global COVID-19 epidemic preparedness,the extensive use of disposable surgical masks(DSM)may lead to its emergence as a main new source of microplastics in the environment.Nowadays,DSMs have become a... In the context of global COVID-19 epidemic preparedness,the extensive use of disposable surgical masks(DSM)may lead to its emergence as a main new source of microplastics in the environment.Nowadays,DSMs have become a non-negligible source of plastic waste in aquatic environment,however,less research has been done on DSM after biofilm colonization in freshwater environment.The study investigated the microbial community of DSM-associated biofilms by 16S rRNA gene sequencing.Analysis of the microbial community in the middle and inner/outer layers of the DSM showed that the middle layer was different from the remaining two layers and that potential pathogens were enriched only in the middle layer of the DSM.Herein,we focused on the middle layer and explored the characterization properties and extracellular polymeric substances(EPS)components changes during biofilm formation.The results showed that the EPS components varied with the biofilm incubation time.As the formation of biofilm,the protein(PN)and polysaccharide(PS)in EPS showed an overall increasing trend,and the growth of PS was well synchronized with PN.Three fluorescent components of EPS were determined by the three-dimensional excitation emission matrix(3D-EEM),including humic acid-like,fulvic acid-like,and aromatic protein-like components.The percentage of fluorescent components varied with increasing biofilm development time and then stabilized.Fourier transform infrared spectroscopy(FTIR)characterization results elucidated the emergence of oxygen-containing functional groups during biofilm formation.Moreover,the hydrophilicity increased with biofilm development.In conclusion,the environmental behavior and ecological risks of DSM in aquatic environment deserve urgent attention in future studies. 展开更多
关键词 BIOFILM disposable surgical masks(DSM) extracellular polymeric substances(EPS) microbial community plastisphere
在线阅读 下载PDF
Organic solvent nanofiltration polymeric membranes:Recent progress,applications,challenges,and perspectives
14
作者 Qianwen Su Xiuming Zhang +1 位作者 Daohui Zhao Ming Li 《Chinese Journal of Chemical Engineering》 2025年第6期196-208,共13页
Organic solvent nanofiltration(OSN) is an efficient,low-energy and environmentally friendly phase-free separation process.Obviously,the core of OSN lies in the fabrication of solvent-resistant nanofiltration membranes... Organic solvent nanofiltration(OSN) is an efficient,low-energy and environmentally friendly phase-free separation process.Obviously,the core of OSN lies in the fabrication of solvent-resistant nanofiltration membranes.Although membrane materials reported in the literature such as 2D membranes,porous organic cages,etc.have the potential for ultra-high performance,polymeric membranes provide key advantages in mass production and processability.Therefore,this review focuses on polymeric materials for OSN.This review summarizes the recent progress of polymeric materials,including emerging and traditional polymeric membranes.Then,a summary of recent progress about strategies developed for perm-selective nanofilms are presented,followed by a brief overview of commercial membrane technology for OSN.Finally,major challenges of OSN and future research directions are presented.Close interaction between the academic research and practical application would help improve greener and more sustainable manufacturing processes. 展开更多
关键词 Organic solvent nanofiltration(OSN) Molecular separation Porous materials Solvent-resistant polymeric membranes Commercial applications
在线阅读 下载PDF
Relationship and effect of redox potential,jarosites and extracellular polymeric substances in bioleaching chalcopyrite by acidithiobacillus ferrooxidans 被引量:13
15
作者 余润兰 钟代立 +3 位作者 苗雷 吴发登 邱冠周 顾国华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1634-1640,共7页
The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different condition... The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly. 展开更多
关键词 extracellular polymeric substances CHALCOPYRITE BIOLEACHING jarosites redox potential
在线阅读 下载PDF
Interaction mechanism of Cu^(2+),Fe^(3+) ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370 被引量:13
16
作者 余润兰 刘晶 +5 位作者 陈安 钟代立 李乾 覃文庆 邱冠周 顾帼华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期231-236,共6页
The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction ... The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite. 展开更多
关键词 extracellular polymeric substances iron ions copper ions BIOLEACHING CHALCOPYRITE
在线阅读 下载PDF
Characterization on Surface and Interfacial Properties of Nitramine Crystal Fillers and Polymeric Bonding Agents 被引量:5
17
作者 吴文辉 郑斌 姚维尚 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期73-79,共7页
The surface and interfacial properties of polymeric bonding agents and nitramine crystal fillers were studied. The surface free energy and adhesion work of polymeric bonding agents and nitramine fillers were calculate... The surface and interfacial properties of polymeric bonding agents and nitramine crystal fillers were studied. The surface free energy and adhesion work of polymeric bonding agents and nitramine fillers were calculated by using Kaeble′s equations. It was observed that the hydroxyl values of neutral polymeric bonding agents (NPBA) correlate well with the polar components of surface free energies. On the basis of the measurements of swelling ratio and initial modulus, the interfacial bonding through highly crosslinked polymeric shell formation around the nitramine particles and generating interfacial reinforcement were rationalized. The application of Tapping Mode AFM (atomic force micro scope) to observing the surface morphology of NPBA reveals that methyl acrylate monomer appears to play a role for aiding the formation of network like structure when nanometer scale images of NPBA are created. 展开更多
关键词 polymeric bonding agent surface and interfacial characterization nitramine filler
在线阅读 下载PDF
Determination of interfacial adhesive properties for polymeric film by blister test 被引量:1
18
作者 王子菡 马增胜 +1 位作者 周益春 卢春生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3033-3039,共7页
The interfacial adhesive properties ofpolypropylene/stainless steel were studied by the blister test. The polypropylene film with a squared free-standing window was pressured by oil from one side of film. The correspo... The interfacial adhesive properties ofpolypropylene/stainless steel were studied by the blister test. The polypropylene film with a squared free-standing window was pressured by oil from one side of film. The corresponding deformation field was observed by a digital speckle correlation method. The experimental results show that the squared film deforms and debonds from stainless steel with the increase of pressure. The debonding of the squared film in initiates from the center of edge and extends to the comer, and then the deformation of film evolves from square to circle shape. The interfacial adhesive energy of polypropylene/stainless steel is (22.60±1.55) J/m2, which is in agreement with that measured by film with a circular window. 展开更多
关键词 blister test polymeric film interracial adhesive properties DEBONDING whole-filed deformation
在线阅读 下载PDF
pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery 被引量:11
19
作者 Yanhua Liu Wenping Wang +2 位作者 Jianhong Yang Chengming Zhou Jin Sun 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2013年第3期159-167,共9页
Most of the conventional chemotherapeutic agents used for cancer chemotherapy suffer from multidrug resistance of tumor cells and poor antitumor efficacy.Based on physiological differences between the normal tissue an... Most of the conventional chemotherapeutic agents used for cancer chemotherapy suffer from multidrug resistance of tumor cells and poor antitumor efficacy.Based on physiological differences between the normal tissue and the tumor tissue,one effective approach to improve the efficacy of cancer chemotherapy is to develop pH-sensitive polymeric micellar delivery systems.The copolymers with reversible protonationedeprotonation core units or acid-liable bonds between the therapeutic agents and the micelle-forming copolymers can be used to form pH-sensitive polymeric micelles for extracellular and intracellular drug smart release.These systems can be triggered to release drug in response to the slightly acidic extracellular fluids of tumor tissue after accumulation in tumor tissues via the enhanced permeability and retention effect,or they can be triggered to release drug in endosomes or lysosomes by pH-controlled micelle hydrolysis or dissociation after uptake by cells via the endocytic pathway.The pH-sensitive micelles have been proved the specific tumor cell targeting,enhanced cellular internalization,rapid drug release,and multidrug resistance reversal.The multifunctional polymeric micelles combining extracellular pH-sensitivity with receptor-mediated active targeting strategies are of great interest for enhanced tumor targeting.The micelles with receptor-mediated and intracellular pH targeting functions are internalized via receptor-mediated endocytosis followed by endosomal-pH triggered drug release inside the cells,which reverses multidrug resistance.The pH sensitivity strategy of the polymeric micelles facilitates the specific drug delivery with reduced systemic side effects and improved chemotherapeutical efficacy,and is a novel promising platform for tumor-targeting drug delivery. 展开更多
关键词 pH-sensitive polymeric micelles Tumor extracellular pH targeting Tumor intracellular pH targeting Multifunctional polymeric micelles MDR reversion
在线阅读 下载PDF
Optimization of Extraction Conditions of Extracellular Polymeric Substances from Activated Sludge
20
作者 唐金花 许国仁 +2 位作者 萧静 Ludovico Spinosa 李圭白 《Agricultural Science & Technology》 CAS 2012年第2期384-387,433,共5页
[Objective] To explore the optimal extraction conditions of extracellular polymeric substances (EPS) from activated sludge. [Method] The efficiency of five methods (H2SO4, formaldehyde-NaOH, mixing, heating and NaO... [Objective] To explore the optimal extraction conditions of extracellular polymeric substances (EPS) from activated sludge. [Method] The efficiency of five methods (H2SO4, formaldehyde-NaOH, mixing, heating and NaOH) on the extraction of EPS was investigated comparatively. The optimal extraction conditions of the most suitable method were determined. [Result] NaOH method is most effective in extracting EPS with less DNA contamination and shortened extraction period. The optimal extraction condition was pH of 11, extraction time of 10 min and agitation speed of 80-120 r/min. [Conclusion] The determined optimal extraction condition provided theoretical basis for EPS study. 展开更多
关键词 Activated sludge Extracellular polymeric substances (EPS) EXTRACTION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部