Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of...Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV < 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10^(–6)x^2 + 0.0228 x + 0.0211(R^2 = 0.9994,P < 0.05),and a power function model R? = 10.394?^(0.2153)(R^2 = 0.9759,P < 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km^2) and the ?,with the highest R^2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.展开更多
普查数据是地理学空间分析的重要数据源。由于受到数据与计算机处理能力的限制,以往的研究对普查数据空间分析的不确定性未给予足够重视,也未形成成熟的研究方法。在建筑物单元的人口普查数据支持下,本文基于多边形统计数据的可塑面积...普查数据是地理学空间分析的重要数据源。由于受到数据与计算机处理能力的限制,以往的研究对普查数据空间分析的不确定性未给予足够重视,也未形成成熟的研究方法。在建筑物单元的人口普查数据支持下,本文基于多边形统计数据的可塑面积单元问题(Modifiable areal unit problem,MAUP)特征,设计了一种该类数据空间分析不确定性的研究方法,采用不同的尺度(Scale)及分区(Zoning)系统对多边形的统计数据空间分析的准确性进行了分析。实验引入尺度与形态指数,利用可视化分析和数据拟合的研究方法,对尺度及分区对空间分析结果的影响模式进行了模拟。研究结果表明:(1)以统计小区的空间分析,其结果受统计小区空间形态的影响较大,不确定性强,不能充分反映统计数据本身的空间特征;(2)规则格网能较好地保持原始统计数据的空间分布特征,但仍然受尺度及分区影响;(3)规则格网的空间分析结果及其准确性与尺度有较好的拟合关系,不同尺度下的分析结果不确定性是原始数据不同尺度特征的体现;(4)分区效应受空间分析方法的计算尺度影响,两者共同对空间分析结果产生影响。对于固定尺度的规则格网,其邻接多边形数目是分析结果不确定的主要原因。本文研究结果表明,在多边形统计数据空间分析时,应该对其使用规则格网重新聚合,并根据实际应用的需求选择多尺度分析方法,以达到实际应用目的。展开更多
基金Under the auspices of Special Project of National Key Research and Development Program(No.2016YFD0200301)National Natural Science Foundation of China(No.41571206)Special Project of National Science and Technology Basic Work(No.2015FY110700-S2)
文摘Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV < 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10^(–6)x^2 + 0.0228 x + 0.0211(R^2 = 0.9994,P < 0.05),and a power function model R? = 10.394?^(0.2153)(R^2 = 0.9759,P < 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km^2) and the ?,with the highest R^2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition.
文摘普查数据是地理学空间分析的重要数据源。由于受到数据与计算机处理能力的限制,以往的研究对普查数据空间分析的不确定性未给予足够重视,也未形成成熟的研究方法。在建筑物单元的人口普查数据支持下,本文基于多边形统计数据的可塑面积单元问题(Modifiable areal unit problem,MAUP)特征,设计了一种该类数据空间分析不确定性的研究方法,采用不同的尺度(Scale)及分区(Zoning)系统对多边形的统计数据空间分析的准确性进行了分析。实验引入尺度与形态指数,利用可视化分析和数据拟合的研究方法,对尺度及分区对空间分析结果的影响模式进行了模拟。研究结果表明:(1)以统计小区的空间分析,其结果受统计小区空间形态的影响较大,不确定性强,不能充分反映统计数据本身的空间特征;(2)规则格网能较好地保持原始统计数据的空间分布特征,但仍然受尺度及分区影响;(3)规则格网的空间分析结果及其准确性与尺度有较好的拟合关系,不同尺度下的分析结果不确定性是原始数据不同尺度特征的体现;(4)分区效应受空间分析方法的计算尺度影响,两者共同对空间分析结果产生影响。对于固定尺度的规则格网,其邻接多边形数目是分析结果不确定的主要原因。本文研究结果表明,在多边形统计数据空间分析时,应该对其使用规则格网重新聚合,并根据实际应用的需求选择多尺度分析方法,以达到实际应用目的。