To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonli...To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.展开更多
The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational f...The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.展开更多
Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations i...Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.展开更多
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been...Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.展开更多
Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass ...Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups are given.The structural equation of Mei symmetry of Appell equations and the expression of Mei conserved quantity deduced directly from Mei symmetry for a variable mass holonomic system of relative motion are gained.Finally,an example is given to illustrate the application of the results.展开更多
The mass non-uniformity of hemispherical resonator is one of reasons for frequency split,and frequency split can cause gyroscope to drift.Therefore,it is of great significance to analyze the relationship between mass ...The mass non-uniformity of hemispherical resonator is one of reasons for frequency split,and frequency split can cause gyroscope to drift.Therefore,it is of great significance to analyze the relationship between mass non-uniformity and frequency split,which can provide a theoretical basis for mass balance of imperfect resonator.The starting point of error mechanism analysis for gyroscope is the motion equations of resonator.Firstly,based on the Kirchhoff-Love hypothesis in the elastic thin shell theory,the geometric deformation equations of resonator are deduced.Secondly,the deformation energy equation of resonator is derived according to the vibration mode and relationship between the stress and strain of hemispherical thin shell.Thirdly,the kinetic energy equation of resonator is deduced by the Coriolis theorem.Finally,the motion equations of resonator are established by the Lagrange mechanics principle.The theoretical values of precession factor and natural frequency are calculated by the motion equations,which are substantially consistent with the ones by the finite element method and practical measurement,the errors are within a reasonable range.Simultaneously,the varying trend of natural frequency with respect to the geometrical and physical parameters of resonator by the motion equations is consistent with that by the finite element analysis.The above conclusions prove the correctness and rationality of motion equations.Similarly,the motion equations of resonator with mass non-uniformity are established by the same modeling method in case of ignoring the input angular rate and damping,and the state equations with respect to the velocity and displacement of vibration system are derived,then twonatural frequencies are solved by the characteristic equation.It is concluded that one of reasons for frequency split is the 4 th harmonic of mass non-uniformity,and thus much attention should be paid to minimizing the 4 th harmonic of mass non-uniformity in the course of mass balancing for imperfect resonator.展开更多
The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equa...The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equations of motion and the boundary conditions of incremental rate type of Cauchy form, Piola form and Kirchhoff from for polar continua are obtained in combination of these results with those for classical continuum mechanics derived by kuang Zhenbang.展开更多
In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to ...In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.展开更多
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ...In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.展开更多
Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic...Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.展开更多
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man...In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.展开更多
This paper presents a field method for integrating the equations of motion of nonholonomic controllable systems. An example is given to illustrate the application of the method.
In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of th...In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of the result is given.展开更多
This paper presents one type of integrals and its condition of existence for the equations of motion of higher-order nonholonomic systems, including l-order integral (generalized energy integral), 2-order integral and...This paper presents one type of integrals and its condition of existence for the equations of motion of higher-order nonholonomic systems, including l-order integral (generalized energy integral), 2-order integral and p-order integral (p>2)All of these integrals can be constructed by the Lagrangian function of the system. Two examples are given to illustrate the application of the suggested method.展开更多
In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are d...In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are deduced from them. Secondly,the equivalence to Lagrange’s equations for percussion motion and Kane’sequations is obtained,and the application of the new equation is illustrated by anexample.展开更多
On condition that the basic equations set of atmospheric motion possesses the best stability in the smooth function classes, the structure of solution space for local analytical solution is discussed, by which the thi...On condition that the basic equations set of atmospheric motion possesses the best stability in the smooth function classes, the structure of solution space for local analytical solution is discussed, by which the third-class initial value problem with typ- icality and application is analyzed. The calculational method and concrete expressions of analytical solution about the well-posed initial value problem of the third-kind are given in the analytic function classes. Near an appointed point, the relevant theoretical and computational problems about analytical solution of initial value problem are solved completely in the meaning of local solution. Moreover, for other type ofproblems for determining solution, the computational method and process of their stable analytical solution can be obtained in a similar way given in this paper.展开更多
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the...In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.展开更多
The theory of Smith (1977,1980) is generalized to include both forced and free rotations by introducing an arbitrarily rotating nutation frame.The Eulerien equations are transformed to include the following unknowns:t...The theory of Smith (1977,1980) is generalized to include both forced and free rotations by introducing an arbitrarily rotating nutation frame.The Eulerien equations are transformed to include the following unknowns:the angular velocity of the nutation frame with respect to the spatial frame,which represents the nutation,and the angles defining the orientation of the Earth with respect to the nutation frame,which represents the polar motion.Together with the definition of the nutation frame (as the definition of the nutation frame is arbitrary to some extent),one can solve simultaneously forced and free nutation and polar motion.As demonstrative examples,studies of nutation and polar motion are made by assuming the nutation axis to be the Earth’s figure axis,rotation axis and angular momentum axis respectively.And the case of the celestial ephemeris pole is also studied.展开更多
In a previous work[J.Chem.Phys.140,174105(2014)],we have shown that a mixed quantum classical(MQC)rate theory can be derived to investigate the quantum tunneling effects in the proton transfer reactions.However,the me...In a previous work[J.Chem.Phys.140,174105(2014)],we have shown that a mixed quantum classical(MQC)rate theory can be derived to investigate the quantum tunneling effects in the proton transfer reactions.However,the method is based on the high temperature approximation of the hierarchical equation of motion(HEOM)with the Debye-Drude spectral density,and results in a multistate Zusman type of equation.We now extend this theory to include quantum effects of the bath degrees of freedom.By writing the full HEOM into a multidimensional partial differential equation in phase space,we can define a new reaction coordinate,and the previous method can be generalized to the full quantum regime.The validity of the new method is demonstrated by using numerical examples,including the spin-Boson model,and the double well model for proton transfer reaction.The new method is found to resolve some key problems of the previous theory based on high temperature approximation,including possible numerical instability in long time simulation and wrong rate constant at low temperatures.展开更多
The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications ...The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications to systems with strong electron correlation are largely restrained by the computational cost,which is mainly caused by the high truncation tier L required to accurately characterize the strong correlation effect.In this work,we develop an adiabatic terminator by decoupling the principal dissipation mode with the fastest dissipation rate from the slower ones.The adiabatic terminator leads to substantially enhanced convergence with respect to L as demonstrated by the numerical tests carried out on a single impurity Anderson model.Moreover,the adiabatic terminator alleviates the numerical instability problems in the long-time dissipative dynamics.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.21033008 and No.21073169)the National Basic Research Program of China (No.2010CB923300 and No.2011CB921400)and the Hong Kong RGC (No.604709) and UGC (AoE/P04/08-2) is gratefully acknowledged.
文摘To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.
基金supported by the National Natural Science Foundation of China(11232002)the Ph.D.Student Foundation of Chinese Ministry of Education(30400002011105001)
文摘The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.
文摘Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China(71571001)
文摘Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups are given.The structural equation of Mei symmetry of Appell equations and the expression of Mei conserved quantity deduced directly from Mei symmetry for a variable mass holonomic system of relative motion are gained.Finally,an example is given to illustrate the application of the results.
基金the Pre-Research Fund during the“13th Five-Year Plan” (No. 41417060101)。
文摘The mass non-uniformity of hemispherical resonator is one of reasons for frequency split,and frequency split can cause gyroscope to drift.Therefore,it is of great significance to analyze the relationship between mass non-uniformity and frequency split,which can provide a theoretical basis for mass balance of imperfect resonator.The starting point of error mechanism analysis for gyroscope is the motion equations of resonator.Firstly,based on the Kirchhoff-Love hypothesis in the elastic thin shell theory,the geometric deformation equations of resonator are deduced.Secondly,the deformation energy equation of resonator is derived according to the vibration mode and relationship between the stress and strain of hemispherical thin shell.Thirdly,the kinetic energy equation of resonator is deduced by the Coriolis theorem.Finally,the motion equations of resonator are established by the Lagrange mechanics principle.The theoretical values of precession factor and natural frequency are calculated by the motion equations,which are substantially consistent with the ones by the finite element method and practical measurement,the errors are within a reasonable range.Simultaneously,the varying trend of natural frequency with respect to the geometrical and physical parameters of resonator by the motion equations is consistent with that by the finite element analysis.The above conclusions prove the correctness and rationality of motion equations.Similarly,the motion equations of resonator with mass non-uniformity are established by the same modeling method in case of ignoring the input angular rate and damping,and the state equations with respect to the velocity and displacement of vibration system are derived,then twonatural frequencies are solved by the characteristic equation.It is concluded that one of reasons for frequency split is the 4 th harmonic of mass non-uniformity,and thus much attention should be paid to minimizing the 4 th harmonic of mass non-uniformity in the course of mass balancing for imperfect resonator.
文摘The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equations of motion and the boundary conditions of incremental rate type of Cauchy form, Piola form and Kirchhoff from for polar continua are obtained in combination of these results with those for classical continuum mechanics derived by kuang Zhenbang.
基金supported by NSFC(11271020,11401010)Natural Science Foundation of Anhui Province(1308085QA14)+1 种基金supported by NSFC(11571071)Innovation Program of Shanghai Municipal Education Commission(12ZZ063)
文摘In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.
基金supported by the National Natural Science Foundation of China (10732030) and the 111 Project (B07009)
文摘In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.
基金Project supported by the National Natural Science Foundation of China (Nos.40175014, 90411006)the Science Foundation of Shanghai Municipal Commission of Science and Technology(No.02DJ14032)
文摘Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.
基金sponsored by Bureau Veritas under the administration of Dr.ime Malenica
文摘In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.
文摘This paper presents a field method for integrating the equations of motion of nonholonomic controllable systems. An example is given to illustrate the application of the method.
文摘In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of the result is given.
文摘This paper presents one type of integrals and its condition of existence for the equations of motion of higher-order nonholonomic systems, including l-order integral (generalized energy integral), 2-order integral and p-order integral (p>2)All of these integrals can be constructed by the Lagrangian function of the system. Two examples are given to illustrate the application of the suggested method.
文摘In this paper,the Kane’s equations for the Routh’s form of variable massnonholonomic systems are established.and the Kane’s equations for percussion motionof variable mass holonomic and nonholonomic systems are deduced from them. Secondly,the equivalence to Lagrange’s equations for percussion motion and Kane’sequations is obtained,and the application of the new equation is illustrated by anexample.
基金Project supported by the National Natural Science Foundation of China (Major Program of the Tenth Five-Year Plan) (No.90411006).
文摘On condition that the basic equations set of atmospheric motion possesses the best stability in the smooth function classes, the structure of solution space for local analytical solution is discussed, by which the third-class initial value problem with typ- icality and application is analyzed. The calculational method and concrete expressions of analytical solution about the well-posed initial value problem of the third-kind are given in the analytic function classes. Near an appointed point, the relevant theoretical and computational problems about analytical solution of initial value problem are solved completely in the meaning of local solution. Moreover, for other type ofproblems for determining solution, the computational method and process of their stable analytical solution can be obtained in a similar way given in this paper.
基金Project supported by the Science and Technology Program of Xi’an City,China(Grant No.CXY1352WL34)
文摘In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChi na (No .498740 0 3)
文摘The theory of Smith (1977,1980) is generalized to include both forced and free rotations by introducing an arbitrarily rotating nutation frame.The Eulerien equations are transformed to include the following unknowns:the angular velocity of the nutation frame with respect to the spatial frame,which represents the nutation,and the angles defining the orientation of the Earth with respect to the nutation frame,which represents the polar motion.Together with the definition of the nutation frame (as the definition of the nutation frame is arbitrary to some extent),one can solve simultaneously forced and free nutation and polar motion.As demonstrative examples,studies of nutation and polar motion are made by assuming the nutation axis to be the Earth’s figure axis,rotation axis and angular momentum axis respectively.And the case of the celestial ephemeris pole is also studied.
基金supported by the National Natural Science Foundation of China(No.21933011)the K.C.Wong Education Foundation。
文摘In a previous work[J.Chem.Phys.140,174105(2014)],we have shown that a mixed quantum classical(MQC)rate theory can be derived to investigate the quantum tunneling effects in the proton transfer reactions.However,the method is based on the high temperature approximation of the hierarchical equation of motion(HEOM)with the Debye-Drude spectral density,and results in a multistate Zusman type of equation.We now extend this theory to include quantum effects of the bath degrees of freedom.By writing the full HEOM into a multidimensional partial differential equation in phase space,we can define a new reaction coordinate,and the previous method can be generalized to the full quantum regime.The validity of the new method is demonstrated by using numerical examples,including the spin-Boson model,and the double well model for proton transfer reaction.The new method is found to resolve some key problems of the previous theory based on high temperature approximation,including possible numerical instability in long time simulation and wrong rate constant at low temperatures.
文摘The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications to systems with strong electron correlation are largely restrained by the computational cost,which is mainly caused by the high truncation tier L required to accurately characterize the strong correlation effect.In this work,we develop an adiabatic terminator by decoupling the principal dissipation mode with the fastest dissipation rate from the slower ones.The adiabatic terminator leads to substantially enhanced convergence with respect to L as demonstrated by the numerical tests carried out on a single impurity Anderson model.Moreover,the adiabatic terminator alleviates the numerical instability problems in the long-time dissipative dynamics.