期刊文献+
共找到23,182篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Airborne Point Cloud Data Registration Using Urban Buildings as an Example
1
作者 Yajun Fan Yujun Shi +1 位作者 Chengjie Su Kai Wang 《Journal of World Architecture》 2025年第4期35-42,共8页
Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)... Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)products.Combined with image data,this technology can further enrich and extract spatial geographic information.However,practically,due to the limited operating range of airborne LiDAR and the large area of task,it would be necessary to perform registration and stitching process on point clouds of adjacent flight strips.By eliminating grow errors,the systematic errors in the data need to be effectively reduced.Thus,this paper conducts research on point cloud registration methods in urban building areas,aiming to improve the accuracy and processing efficiency of airborne LiDAR data.Meanwhile,an improved post-ICP(Iterative Closest Point)point cloud registration method was proposed in this study to determine the accurate registration and efficient stitching of point clouds,which capable to provide a potential technical support for applicants in related field. 展开更多
关键词 Airborne LiDAR point cloud registration point cloud data processing Systematic error
在线阅读 下载PDF
Multi-sensor missile-borne LiDAR point cloud data augmentation based on Monte Carlo distortion simulation
2
作者 Luda Zhao Yihua Hu +4 位作者 Fei Han Zhenglei Dou Shanshan Li Yan Zhang Qilong Wu 《CAAI Transactions on Intelligence Technology》 2025年第1期300-316,共17页
Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmenta... Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms. 展开更多
关键词 data augmentation LIDAR missile-borne imaging Monte Carlo simulation point cloud
在线阅读 下载PDF
Point Cloud Method for Detecting Suspended Pipelines Using Multi-Beam Water Column Data
3
作者 YAN Zhenyu ZHOU Tian +3 位作者 ZHU Jianjun LI Tie DU Weidong ZHANG Baihan 《Journal of Ocean University of China》 2025年第6期1683-1691,共9页
In the task of inspecting underwater suspended pipelines,multi-beam sonar(MBS)can provide two-dimensional water column images(WCIs).However,systematic interferences(e.g.,sidelobe effects)may induce misdetection in WCI... In the task of inspecting underwater suspended pipelines,multi-beam sonar(MBS)can provide two-dimensional water column images(WCIs).However,systematic interferences(e.g.,sidelobe effects)may induce misdetection in WCIs.To address this issue and improve the accuracy of detection,we developed a density-based clustering method for three-dimensional water column point clouds.During the processing of WCIs,sidelobe effects are mitigated using a bilateral filter and brightness transformation.The cross-sectional point cloud of the pipeline is then extracted by using the Canny operator.In the detection phase,the target is identified by using density-based spatial clustering of applications with noise(DBSCAN).However,the selection of appropriate DBSCAN parameters is obscured by the uneven distribution of the water column point cloud.To overcome this,we propose an improved DBSCAN based on a parameter interval estimation method(PIE-DBSCAN).First,kernel density estimation(KDE)is used to determine the candidate interval of parameters,after which the exact cluster number is determined via density peak clustering(DPC).Finally,the optimal parameters are selected by comparing the mean silhouette coefficients.To validate the performance of PIE-DBSCAN,we collected water column point clouds from an anechoic tank and the South China Sea.PIE-DBSCAN successfully detected both the target points of the suspended pipeline and non-target points on the seafloor surface.Compared to the K-Means and Mean-Shift algorithms,PIE-DBSCAN demonstrates superior clustering performance and shows feasibility in practical applications. 展开更多
关键词 multi-beam sonar water column image water column point cloud density-based noisy application spatial clustering suspended pipeline detection
在线阅读 下载PDF
Automatic identification of discontinuities and refined modeling of rock blocks from 3D point cloud data of rock surfaces
4
作者 Yaopeng Ji Shengyuan Song +5 位作者 Jianping Chen Jingyu Xue Jianhua Yan Yansong Zhang Di Sun Qing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3093-3106,共14页
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach... The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering. 展开更多
关键词 Three-dimensional(3D)point cloud Rock mass Automatic identification Refined modeling Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data 被引量:11
5
作者 邸凯昌 岳宗玉 +1 位作者 刘召芹 王树良 《Journal of Earth Science》 SCIE CAS CSCD 2013年第1期125-135,共11页
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b... A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies. 展开更多
关键词 Mars rover rock extraction rover image 3D point cloud data.
原文传递
A Fast Compression Framework Based on 3D Point Cloud Data for Telepresence 被引量:3
6
作者 Zun-Ran Wang Chen-Guang Yang Shi-Lu Dai 《International Journal of Automation and computing》 EI CSCD 2020年第6期855-866,共12页
In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is... In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is designed to track the human motion and the 3D point cloud data of the human body is acquired by using the tracking 2D box.The other part is applied to remove the temporal redundancy of the 3D point cloud data.The temporal redundancy between point clouds is removed by using the motion vector,i.e.,the most similar cluster in the previous frame is found for the cluster in the current frame by comparing the cluster feature and the cluster in the current frame is replaced by the motion vector for compressing the current frame.The hrst,the B-SHOT(binary signatures of histograms orientation)descriptor is applied to represent the point feature for matching the corresponding point between two frames.The second,the K-mean algorithm is used to generate the cluster because there are a lot of unsuccessfully matched points in the current frame.The matching operation is exploited to find the corresponding clusters between the point cloud data of two frames.Finally,the cluster information in the current frame is replaced by the motion vector for compressing the current frame and the unsuccessfully matched clusters in the curren t and the motion vectors are transmit ted into the rem ote end.In order to reduce calculation time of the B-SHOT descriptor,we introduce an octree structure into the B-SHOT descriptor.In particular,in order to improve the robustness of the matching operation,we design the cluster feature to estimate the similarity bet ween two clusters.Experimen tai results have shown the bet ter performance of the proposed method due to the lower calculation time and the higher compression ratio.The proposed met hod achieves the compression ratio of 8.42 and the delay time of 1228 ms compared with the compression ratio of 5.99 and the delay time of 2163 ms in the octree-based compression method under conditions of similar distortion rate. 展开更多
关键词 3D point cloud compression motion estimation signatures of histograms orientation 3D point cloud matching predicted frame and intra frame.
原文传递
Design of a Private Cloud Platform for Distributed Logging Big Data Based on a Unified Learning Model of Physics and Data 被引量:1
7
作者 Cheng Xi Fu Haicheng Tursyngazy Mahabbat 《Applied Geophysics》 2025年第2期499-510,560,共13页
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th... Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity. 展开更多
关键词 Unified logging learning model logging big data private cloud machine learning
在线阅读 下载PDF
A New Encryption Mechanism Supporting the Update of Encrypted Data for Secure and Efficient Collaboration in the Cloud Environment
8
作者 Chanhyeong Cho Byeori Kim +1 位作者 Haehyun Cho Taek-Young Youn 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期813-834,共22页
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud... With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks. 展开更多
关键词 cloud collaboration mode of operation data update efficiency
在线阅读 下载PDF
A LiDAR Point Clouds Dataset of Ships in a Maritime Environment 被引量:1
9
作者 Qiuyu Zhang Lipeng Wang +2 位作者 Hao Meng Wen Zhang Genghua Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1681-1694,共14页
For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are ac... For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset. 展开更多
关键词 3D point clouds dataset dynamic tail wave fog simulation rainy simulation simulated data
在线阅读 下载PDF
Methodology for Extraction of Tunnel Cross-Sections Using Dense Point Cloud Data 被引量:4
10
作者 Yueqian SHEN Jinguo WANG +2 位作者 Jinhu WANG Wei DUAN Vagner G.FERREIRA 《Journal of Geodesy and Geoinformation Science》 2021年第2期56-71,共16页
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute... Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications. 展开更多
关键词 CROSS-SECTION control point convergence analysis z-score method terrestrial laser scanning dense point cloud data
在线阅读 下载PDF
Landslide data mosaicking based on an airborne laser point cloud and multi-beam sonar images 被引量:1
11
作者 JI Hao-wei LUO Xian-qi ZHOU Yong-jun 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2068-2080,共13页
Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have pr... Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have predominantly focused on landslides that occur on land.To this end,we aim to investigate ashore and underwater landslide data synchronously.This study proposes an optimized mosaicking method for ashore and underwater landslide data.This method fuses an airborne laser point cloud with multi-beam depth sounder images.Owing to their relatively high efficiency and large coverage area,airborne laser measurement systems are suitable for emergency investigations of landslides.Based on the airborne laser point cloud,the traversal of the point with the lowest elevation value in the point set can be used to perform rapid extraction of the crude channel boundaries.Further meticulous extraction of the channel boundaries is then implemented using the probability mean value optimization method.In addition,synthesis of the integrated ashore and underwater landslide data angle is realized using the spatial guide line between the channel boundaries and the underwater multibeam sonar images.A landslide located on the right bank of the middle reaches of the Yalong River is selected as a case study to demonstrate that the proposed method has higher precision thantraditional methods.The experimental results show that the mosaicking method in this study can meet the basic needs of landslide modeling and provide a basis for qualitative and quantitative analysis and stability prediction of landslides. 展开更多
关键词 Laser point cloud Airborne laser measurement Mosaicking method Multi-beam sonar images SHIPBORNE Channel boundaries
原文传递
基于Pointnet++的花生植株三维模型器官分割研究
12
作者 孟兆凡 程曼 +1 位作者 袁洪波 赵欢 《中国农机化学报》 北大核心 2026年第1期118-127,共10页
基于点云进行三维重构并进行器官分割对植物学研究至关重要,为研究花生植株茎叶器官分割训练样本的数量和类型对分割结果的影响规律,基于Pointnet++构建花生植株三维模型茎叶分割网络模型,并对比分析训练集类型以及数量对分割效果的影... 基于点云进行三维重构并进行器官分割对植物学研究至关重要,为研究花生植株茎叶器官分割训练样本的数量和类型对分割结果的影响规律,基于Pointnet++构建花生植株三维模型茎叶分割网络模型,并对比分析训练集类型以及数量对分割效果的影响。当训练集为10株花生幼苗期数据时,模型分割效果最好,准确率、类平均准确率、类平均交并比、F1分数分别为94.5%、81.9%、76.9%、85.7%。其中,在花生荚果期训练集中加入20株开花期数据,类平均准确率、类平均交并比分别上升19.55%、20.75%。试验结果表明,Pointnet++可以有效分割花生植株茎叶器官,训练集的多样性和数据量的增加有利于模型学习花生植株不同生长阶段的形态特征,在训练集中加入相近生长阶段和生长特征的模型数据,并增加数据量对模型分割效果提高更明显。 展开更多
关键词 花生植株 三维建模 点云 器官分割 训练集
在线阅读 下载PDF
Usage of 3D Point Cloud Data in BIM (Building Information Modelling): Current Applications and Challenges 被引量:1
13
作者 Tan Qu Wei Sun 《Journal of Civil Engineering and Architecture》 2015年第11期1269-1278,共10页
BIM(building information modelling)has gained wider acceptance in the A/E/C(architecture/engineering/construction)industry in the US and internationally.This paper presents current industry approaches of implementing ... BIM(building information modelling)has gained wider acceptance in the A/E/C(architecture/engineering/construction)industry in the US and internationally.This paper presents current industry approaches of implementing 3D point cloud data in BIM and VDC(virtual design and construction)applications during various stages of a project life cycle and the challenges associated with processing the huge amount of 3D point cloud data.Conversion from discrete 3D point cloud raster data to geometric/vector BIM data remains to be a labor-intensive process.The needs for intelligent geometric feature detection/reconstruction algorithms for automated point cloud processing and issues related to data management are discussed.This paper also presents an innovative approach for integrating 3D point cloud data with BIM to efficiently augment built environment design,construction and management. 展开更多
关键词 BIM point cloud laser scanning 3D
在线阅读 下载PDF
Construction of an Intelligent Early Warning System for a Cloud-Based Laboratory Data Platform under the Medical Consortium Model
14
作者 Jibiao Zhou 《Journal of Electronic Research and Application》 2025年第4期268-275,共8页
With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare re... With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems. 展开更多
关键词 Medical consortium Laboratory data cloud platform Intelligent early warning data standardization Machine learning
在线阅读 下载PDF
Perceptual point cloud quality assessment for immersive metaverse experience
15
作者 Baoping Cheng Lei Luo +2 位作者 Ziyang He Ce Zhu Xiaoming Tao 《Digital Communications and Networks》 2025年第3期806-817,共12页
Perceptual quality assessment for point cloud is critical for immersive metaverse experience and is a challenging task.Firstly,because point cloud is formed by unstructured 3D points that makes the topology more compl... Perceptual quality assessment for point cloud is critical for immersive metaverse experience and is a challenging task.Firstly,because point cloud is formed by unstructured 3D points that makes the topology more complex.Secondly,the quality impairment generally involves both geometric attributes and color properties,where the measurement of the geometric distortion becomes more complex.We propose a perceptual point cloud quality assessment model that follows the perceptual features of Human Visual System(HVS)and the intrinsic characteristics of the point cloud.The point cloud is first pre-processed to extract the geometric skeleton keypoints with graph filtering-based re-sampling,and local neighboring regions around the geometric skeleton keypoints are constructed by K-Nearest Neighbors(KNN)clustering.For geometric distortion,the Point Feature Histogram(PFH)is extracted as the feature descriptor,and the Earth Mover’s Distance(EMD)between the PFHs of the corresponding local neighboring regions in the reference and the distorted point clouds is calculated as the geometric quality measurement.For color distortion,the statistical moments between the corresponding local neighboring regions are computed as the color quality measurement.Finally,the global perceptual quality assessment model is obtained as the linear weighting aggregation of the geometric and color quality measurement.The experimental results on extensive datasets show that the proposed method achieves the leading performance as compared to the state-of-the-art methods with less computing time.Meanwhile,the experimental results also demonstrate the robustness of the proposed method across various distortion types.The source codes are available at https://github.com/llsurreal919/Point Cloud Quality Assessment. 展开更多
关键词 Metaverse point cloud Quality assessment point feature histogram Earth mover’s distance
在线阅读 下载PDF
Identification and automatic recognition of discontinuities from 3D point clouds of rock mass exposure
16
作者 Peitao Wang Boran Huang +1 位作者 Yijun Gao Meifeng Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4982-5000,共19页
Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of disco... Mapping and analyzing rock mass discontinuities based on 3D(three-dimensional)point cloud(3DPC)is one of the most important work in the engineering geomechanical survey.To efficiently analyze the distribution of discontinuities,a self-developed code termed as the cloud-group-cluster(CGC)method based on MATLAB for mapping and detecting discontinuities based on the 3DPC was introduced.The identification and optimization of discontinuity groups were performed using three key parameters,i.e.K,θ,and f.A sensitivity analysis approach for identifying the optimal key parameters was introduced.The results show that the comprehensive analysis of the main discontinuity groups,mean orientations,and densities could be achieved automatically.The accuracy of the CGC method was validated using tetrahedral and hexahedral models.The 3D point cloud data were divided into three levels(point cloud,group,and cluster)for analysis,and this three-level distribution recognition was applied to natural rock surfaces.The densities and spacing information of the principal discontinuities were automatically detected using the CGC method.Five engineering case studies were conducted to validate the CGC method,showing the applicability in detecting rock discontinuities based on 3DPC model. 展开更多
关键词 Rock mass point cloud Rock discontinuities Semi-automatic detection
在线阅读 下载PDF
Point-PC:Point cloud completion guided by prior knowledge via causal inference
17
作者 Xuesong Gao Chuanqi Jiao +2 位作者 Ruidong Chen Weijie Wang Weizhi Nie 《CAAI Transactions on Intelligence Technology》 2025年第4期1007-1018,共12页
The goal of point cloud completion is to reconstruct raw scanned point clouds acquired from incomplete observations due to occlusion and restricted viewpoints.Numerous methods use a partial-to-complete framework,direc... The goal of point cloud completion is to reconstruct raw scanned point clouds acquired from incomplete observations due to occlusion and restricted viewpoints.Numerous methods use a partial-to-complete framework,directly predicting missing components via global characteristics extracted from incomplete inputs.However,this makes detail re-covery challenging,as global characteristics fail to provide complete missing component specifics.A new point cloud completion method named Point-PC is proposed.A memory network and a causal inference model are separately designed to introduce shape priors and select absent shape information as supplementary geometric factors for aiding completion.Concretely,a memory mechanism is proposed to store complete shape features and their associated shapes in a key-value format.The authors design a pre-training strategy that uses contrastive learning to map incomplete shape features into the complete shape feature domain,enabling retrieval of analogous shapes from incomplete inputs.In addition,the authors employ backdoor adjustment to eliminate confounders,which are shape prior components sharing identical semantic structures with incomplete inputs.Experiments conducted on three datasets show that our method achieves superior performance compared to state-of-the-art approaches.The code for Point-PC can be accessed by https://github.com/bizbard/Point-PC.git. 展开更多
关键词 causal inference contrastive alignment memory network point cloud completion
在线阅读 下载PDF
Research on Reverse Modeling of Parametric CAD Models from Multi-View RGB-D Point Clouds
18
作者 Yangzhi Zhang 《Journal of Electronic Research and Application》 2025年第6期313-320,共8页
Existing reverse-engineering methods struggle to directly generate editable,parametric CAD models from scanned data.To address this limitation,this paper proposes a reverse-modeling approach that reconstructs parametr... Existing reverse-engineering methods struggle to directly generate editable,parametric CAD models from scanned data.To address this limitation,this paper proposes a reverse-modeling approach that reconstructs parametric CAD models from multi-view RGB-D point clouds.Multi-frame point-cloud registration and fusion are first employed to obtain a complete 3-D point cloud of the target object.A region-growing algorithm that jointly exploits color and geometric information segments the cloud,while RANSAC robustly detects and fits basic geometric primitives.These primitives serve as nodes in a graph whose edge features are inferred by a graph neural network to capture spatial constraints.From the detected primitives and their constraints,a high-accuracy,fully editable parametric CAD model is finally exported.Experiments show an average parameter error of 0.3 mm for key dimensions and an overall geometric reconstruction accuracy of 0.35 mm.The work offers an effective technical route toward automated,intelligent 3-D reverse modeling. 展开更多
关键词 CAD model RGB-D point cloud Reverse modeling Geometric information Region-growing algorithm
在线阅读 下载PDF
Understanding Local Conformation in Cyclic and Linear Polymers Using Molecular Dynamics and Point Cloud Neural Network
19
作者 Wan-Chen Zhao Hai-Yang Huo +1 位作者 Zhong-Yuan Lu Zhao-Yan Sun 《Chinese Journal of Polymer Science》 2025年第5期695-710,共16页
Understanding the conformational characteristics of polymers is key to elucidating their physical properties.Cyclic polymers,defined by their closed-loop structures,inherently differ from linear polymers possessing di... Understanding the conformational characteristics of polymers is key to elucidating their physical properties.Cyclic polymers,defined by their closed-loop structures,inherently differ from linear polymers possessing distinct chain ends.Despite these structural differences,both types of polymers exhibit locally random-walk-like conformations,making it challenging to detect subtle spatial variations using conventional methods.In this study,we address this challenge by integrating molecular dynamics simulations with point cloud neural networks to analyze the spatial conformations of cyclic and linear polymers.By utilizing the Dynamic Graph CNN(DGCNN)model,we classify polymer conformations based on the 3D coordinates of monomers,capturing local and global topological differences without considering chain connectivity sequentiality.Our findings reveal that the optimal local structural feature unit size scales linearly with molecular weight,aligning with theoretical predictions.Additionally,interpretability techniques such as Grad-CAM and SHAP identify significant conformational differences:cyclic polymers tend to form prolate ellipsoid shapes with pronounced elongation along the major axis,while linear polymers show elongated ends with more spherical centers.These findings reveal subtle yet critical differences in local conformations between cyclic and linear polymers that were previously difficult to discern,providing deeper insights into polymer structure-property relationships and offering guidance for future polymer science advancements. 展开更多
关键词 Molecular dynamics simulation point cloud Interpretable deep learning Conformational recognition
原文传递
A Category-Agnostic Hybrid Contrastive Learning Method for Few-Shot Point Cloud Object Detection
20
作者 Xuejing Li 《Computers, Materials & Continua》 2025年第5期1667-1681,共15页
Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the nove... Few-shot point cloud 3D object detection(FS3D)aims to identify and locate objects of novel classes within point clouds using knowledge acquired from annotated base classes and a minimal number of samples from the novel classes.Due to imbalanced training data,existing FS3D methods based on fully supervised learning can lead to overfitting toward base classes,which impairs the network’s ability to generalize knowledge learned from base classes to novel classes and also prevents the network from extracting distinctive foreground and background representations for novel class objects.To address these issues,this thesis proposes a category-agnostic contrastive learning approach,enhancing the generalization and identification abilities for almost unseen categories through the construction of pseudo-labels and positive-negative sample pairs unrelated to specific classes.Firstly,this thesis designs a proposal-wise context contrastive module(CCM).By reducing the distance between foreground point features and increasing the distance between foreground and background point features within a region proposal,CCM aids the network in extracting more discriminative foreground and background feature representations without reliance on categorical annotations.Secondly,this thesis utilizes a geometric contrastive module(GCM),which enhances the network’s geometric perception capability by employing contrastive learning on the foreground point features associated with various basic geometric components,such as edges,corners,and surfaces,thereby enabling these geometric components to exhibit more distinguishable representations.This thesis also combines category-aware contrastive learning with former modules to maintain categorical distinctiveness.Extensive experimental results on FS-SUNRGBD and FS-ScanNet datasets demonstrate the effectiveness of this method with average precision exceeding the baseline by up to 8%. 展开更多
关键词 Contrastive learning few-shot learning point cloud object detection
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部