期刊文献+
共找到3,466篇文章
< 1 2 174 >
每页显示 20 50 100
The Future of Plasticizers: Biobased and Oligomeric
1
作者 Bob A.Howell 《Journal of Renewable Materials》 EI CAS 2024年第11期1857-1861,共5页
The deficiencies of popular phthalate plasticizers(ready migration from a polymer matrix into which they have been incorporated,flammability,environmental pollution,human health risks)have stimulated efforts to develo... The deficiencies of popular phthalate plasticizers(ready migration from a polymer matrix into which they have been incorporated,flammability,environmental pollution,human health risks)have stimulated efforts to develop new effective,nonmigrating,low-cost,nontoxic replacements.In the main,these have been based on readilyavailable,nontoxic biobased precursors.Some,including those prepared from plant oils,have been generated from biomaterials themselves.However,the more numerous and generally more effective have been generated from discrete compounds produced from various biomaterials.Several structural features of effective plasticizers have been recognized.Polar functionality is required to assure compatibility with a wide range of polymeric materials,including poly(vinyl chloride)(PVC),the most heavily plasticized polymer.A branched structure greatly enhances the effectiveness of compounds used as plasticizers.An oligomeric structure may strongly limit or prevent migration from a polymer matrix.Hyperbranched oligomers of defined structure derived from the readilyavailable,inexpensive,nontoxic biomonomers,glycerol and adipic acid contain all these features and are excellent plasticizers.They contain ester functionality,are highly branched,and display a large number of end groups,all of which contribute to their effectiveness as plasticizers. 展开更多
关键词 Sustainable plasticizers nonmigrating plasticizers nontoxic plasticizers branched plasticizers oligomeric plasticizers poly(ester)plasticizers
在线阅读 下载PDF
Effects of Plasticizers,Antioxidants and Burning Rate Modifiers on Aging Performance of the HTPB/HMDI Composite Solid Propellant
2
作者 Ahmed M Enew Ehab Abadir +1 位作者 Sahar Elmarsafy Karim K Elsharkawy 《含能材料》 EI CAS CSCD 北大核心 2019年第1期21-27,90,共8页
The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were expl... The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were explored by apply-ing an accelerated aging program for 90 day at 70 ℃. The HTPB propellant matrix with the diisooctyl sebacate(DOS)as plasti-cizers and diisooctyl azelate(DOZ), antioxidants as N,N ′-Diphenyl-p-phenylenediamine(AO) and 2,2′-methylenebis(4-methyl-6-tert-butylphenol)(cyanox 2246)and burning rate modifiers as barium ferrite(BF),copper chromites(CC)and fer-ric oxide(FO)were varied. Results show that sample(S1)which based on DOS decreases the stress value and increases the strain value which considered to be an excellent start for aging program. Sample(S3)containing AO presents the higher resis-tance to oxidation showing the better performance that reflects on increasing the shelf life of the composite solid propellant mo-tor. Sample(S5)which based on BF enhances the ballistic performance among over the other tested two samples. The accelerat-ed aging program allowed us to estimate the motor in-service lifetime. 展开更多
关键词 polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)composite solid PROPELLANT plasticizers ANTIOXIDANTS burning rate MODIFIERS aging program
在线阅读 下载PDF
Reduction of the Additives Migration from Poly Vinyl Chloride Films by the Use of Permanent Plasticizers
3
作者 M. O. Boussoum N. Belhaneche-Bensemra 《Journal of Geoscience and Environment Protection》 2014年第4期49-56,共8页
This aim of this work is to study the partial replacement of the plasticizer ordinarily used di-octyl phtalate (DOP) by the permanent plasticizers ethylene-vinyl-acetate (EVA) and acrylonytrile-bu- tadiene-styrene (AB... This aim of this work is to study the partial replacement of the plasticizer ordinarily used di-octyl phtalate (DOP) by the permanent plasticizers ethylene-vinyl-acetate (EVA) and acrylonytrile-bu- tadiene-styrene (ABS) in order to reduce migration of additives initially contents in polyvinyl chloride (PVC) stabilized with expoxidized sunflower oil (ESO). Migration tests with agitation to 40&deg;C in sunflower oil and ethanol at 15% were made. Migration phenomenon was studied on the basis of the PVC samples mass variations, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) analysis. The results showed the effectiveness of the approach consisting in the partial substitution of DOP by plasticizers of polymeric nature. The following order concerning the migration of additives was found: DOP (40) > DOP:EVA > (30/10) DOP:ABS (30/10). Furthermore, all the measured values of overall migrations were lower than the maximum allowable overall migration: 10 mg-dm-2. 展开更多
关键词 PVC MIGRATION DOP PERMANENT plasticizers Mass VARIATION FTIR Spectroscopy SEM
暂未订购
Research Progress of Environment Friendly Plasticizers for Cellulose Acetate Processing
4
作者 Rui Ding Mengyou Li 《Expert Review of Chinese Chemical》 2024年第2期32-36,共5页
Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular inte... Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular interactions,and play an important role in the melting processing of CA.In recent years,environmentally friendly plasticizers that are natural,non-toxic,odorless,low dissolution,and low migration have received increas-ing attention in plastic processing.This article reviews the research progress of environ-mentally friendly plasticizers such as natural plasticizers,ionic liquid plasticizers,citrate plasticizers,and polyethylene glycol plasticizers in the processing of cellulose acetate,and looks forward to the application prospects of environmentally friendly plasticizers. 展开更多
关键词 cellulose acetate environment protection plasticizers
在线阅读 下载PDF
Effect of Compounding of Sodium Tripolyphosphate and Super Plasticizers on the Hydration of α-calcium Sulfate Hemihydrate 被引量:4
5
作者 潘伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期737-744,共8页
The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-r... The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electronic probe micro analysis (EPMA), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) measurements. The experimental results show that compared with STP addition, compositing STP with polycarboxylate (PC) plasticizer, the final setting time is prolonged from 0.5h to 2hs. While formulating STP with naphthalene-based plasticizer (NAP) or sulfonate melamine formaldehyde plasticizer (SMF), the final setting time is reduced to quarter of an hour. Similar changes can also be found in the rate of exothermic hydration and hydration degree. Formulating STP with suitable addition of PC can enhance the strength, while compositing STP and NAP or SMF weakens the strength. Besides, adding STP or STP and SMF, obvious movement (more than 1ev) of binding energy of Ca2p1/2 and Ca2p3/2 is detected. Compared with STP addition, content of the characteristic element (P) of STP is cut down form 1.1% to 0.49% by compositing STP with SMF. Furthermore, as hydration age increases, hydration inhibition in the presence of admixtures weakens and even disappears within 56 h. 展开更多
关键词 α-calcium sulfate hemihydrate HYDRATION sodium tripolyphosphate PLASTICIZER ADSORPTION
原文传递
Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene(HTPB):Simultaneous tuning on low temperature behavior and processability 被引量:4
6
作者 Baodong Zhao Yinglei Wang +3 位作者 Fulei Gao Yajing Liu Weixiao Liu Feng Ding 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期364-371,共8页
Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane ... Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane chain parts, and systematically investigate their structure-property relationships.Results show that DNPEPs have impact sensitivities all higher than 25.2 J, thermal decomposition temperatures all higher than 254 ℃, and glass transition temperatures(T_(g)) lower than-90 ℃.Furthermore, the effects of DNPEPs as plasticizer are studied on hydroxyl terminated polybutadiene(HTPB) in detail, including the viscosity, glass transition temperatures and others. It is noteworthy that 2,2-dinitropropyl nonanoate(DNPNc) among these DNPEPs exhibits the most expected simultaneous tuning effects on both viscosity and T_(g) of HTPB systems, providing favorable potentials to replace the conventional plastizers as dioctyl sebacate(DOS) in the HTPB based propellants and explosives. 展开更多
关键词 Molecular simulation Experimental validation Preparation Energetic plasticizer Glass transition temperature Viscosity
在线阅读 下载PDF
Thermoplastic Starch Prepared with Different Plasticizers: Relation between Degree of Plasticization and Properties 被引量:8
7
作者 左迎峰 GU Jiyou +1 位作者 TAN Haiyan 张彦华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期423-428,共6页
Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results... Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased. 展开更多
关键词 corn starch plasticizer thermoplastics degree of plasticization properties
原文传递
Effect of Plasticizers on Properties of Rice Straw Fiber Film 被引量:2
8
作者 Chen Hong-rui Chen Hai-tao +2 位作者 Liu Shuang Dun Guo-qiang Zhang Ying 《Journal of Northeast Agricultural University(English Edition)》 CAS 2014年第4期67-72,共6页
In order to improve the properties of rice straw fiber film, one factor contrast test method was employed. Plasticizer type was chosen as input variable, dry tension strength and elongation, wet tension strength and e... In order to improve the properties of rice straw fiber film, one factor contrast test method was employed. Plasticizer type was chosen as input variable, dry tension strength and elongation, wet tension strength and elongation, bursting strength and tearing strength were chosen as indexes. The results showed that there were significant differences among the means of dry tension strength, dry elongation and bursting strength of different plasticizers; there were not significant differences among the means of wet tension strength, wet elongation and tearing strength of different plasticizers; for dry tension strength and elongation, glycerol had a significant difference with sorbitol and PEG, no significant difference was observed between sorbitol and PEG, dry tension strength added glycerol had been reduced 6.8% compared with that added sorbitol, reduced 9.5% compared with that added PEG; elongation had been improved 6.1% and 9.4%, respectively; for bursting strength, sorbitol had a significant difference with glycerol and PEG, no significant difference was observed between glycerol and PEG; bursting strength added glycerol and added PEG had been improved 6.9% and 5.6%, respectively compared with that of the added sorbitol. The results provided a theoretical reference for further improving the straw fiber film manufacturing process. 展开更多
关键词 rice straw FILM PLASTICIZER comparative test
在线阅读 下载PDF
The Effect of Plasticizers on Mechanical Properties and Water Vapor Permeability of Gelatin-Based Edible Films Containing Clay Nanoparticles
9
作者 Mahsa Rezaei Ali Motamedzadegan 《World Journal of Nano Science and Engineering》 2015年第4期178-193,共16页
The effects of glycerol and sorbitol as two plasticizers on mechanical properties, water vapor permeability, thermal properties, color and capability of heat sealing of gelatin films (of phytophagous fish, bovine gela... The effects of glycerol and sorbitol as two plasticizers on mechanical properties, water vapor permeability, thermal properties, color and capability of heat sealing of gelatin films (of phytophagous fish, bovine gelatin with high gel-forming ability, and bovine gelatin with low gel-forming ability) containing clay nanoparticles were studied in this research. For this purpose, 6 × 2 × 3 factorial experiments using the completely randomized design and comparison of the means at 95% confidence level (α = 0.05) were performed. Higher concentrations of plasticizers increased percentage elongation to the breaking point. When glycerol concentration was raised to over 20%, flexibility of the layers improved but their water vapor permeability increased. The minimum passage of water vapor was that of fish-skin gelatin films containing clay nanoparticles and 30% sorbitol, and the maximum that of bovine gelatin films with high gel-forming ability which contained nanoparticles but no plasticizers (p 0.05). All samples had heat sealing capability, and fish-skin gelatin films containing clay nanoparticles had better heat sealing capability compared with the other samples so that fish-skin gelatin films containing clay nanoparticles with 25% glycerol and 5% sorbitol had the highest flexibility and tensile strength, and remained attached to where they were heat sealed. Electron microscope images showed that films without plasticizers had uniform surfaces, but that samples containing glycerol at concentrations of over 0.20 g/g gelatin exhibited cavities between gelatin chains and that water vapor permeability in gelatin films containing clay nanoparticles. 展开更多
关键词 GELATIN CLAY NANOPARTICLES PLASTICIZER Mechanical Properties Water Vapor PERMEABILITY
暂未订购
The effect of lead on dermal exposure of plasticizers in toys and associated risk assessment
10
作者 Chaoli Yuan Mantuo Huang +7 位作者 Jiajia wan Zijia Hong Jiwen Luo Lixuan Zeng Yu Bon Man Bingyan Lan Xiaomin Yan Yuan Kang 《Emerging Contaminants》 2025年第1期407-417,共11页
Numerous studies reported risk assessment of human exposure to plasticizers in toys through dermal pathways,however,dermal bioaccessibility and percutaneous penetration of plasticizers under effects of lead had been s... Numerous studies reported risk assessment of human exposure to plasticizers in toys through dermal pathways,however,dermal bioaccessibility and percutaneous penetration of plasticizers under effects of lead had been seldom studied.In the present study,dermal bioaccessibility of plasticizers including phthalate esters and alternative plasticizers in toys were examined in artificial sweat and SSSM(synthetic sweat and sebum mixture),and percutaneous penetration of plasticizers were investigated by skin cells under individual plasticizers exposure or combined exposure conditions(plasticizers t lead).The present results indicated that dermal bioaccessibility of plasticizers in SSSM were higher than that in artificial sweat.DEHP(Di-2-ethylhexyl Phthalate)showed highest bioaccessibility among all the plasticizers,DEHT(Di(2-ethylhexyl)terephthalate)showed highest bioaccessibility among all the alternative plasticizers.DEHP and DEHT were selected to perform the cell absorption assay.Skin cell absorption assay demonstrated that MEHP(Mono-(2-ethylhexyl)phthalate)was the major metabolite of DEHP and the absorption percentage of DEHP was higher than that of DEHT.Compared to individual exposure of plasticizers,the absorption percentage of DEHP and DEHT in skin cells under the combined exposure condition were increased by 12.40%e14.63%and 8.35%e9.84%,respectively.Risk assessment indicated that the plasticizers in toy would not result in unacceptable risk for children,but the health risk of plasticizers in toys to children under combined exposure condition would be 1.5e2 times higher than that under individual exposure condition. 展开更多
关键词 PLASTICIZER DEHP DEHT LEAD TOYS
原文传递
Novel Designed PEG-Dicationic Imidazolium-Based Ionic Liquids as Effective Plasticizers for Sustainable Polylactide 被引量:2
11
作者 Huijie Zuo Xiangjian Chen +4 位作者 Yingli Ding Liang Cui Baomin Fan Li Pan Kunyu Zhang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第8期2234-2240,共7页
A series of novel polyethylene glycol-dicationic imidazolium-based ionic liquids(mPEG-ILs)were synthesized by facile quaternization reaction from various elaborately designed di-imidazoles and PEG,which were then stud... A series of novel polyethylene glycol-dicationic imidazolium-based ionic liquids(mPEG-ILs)were synthesized by facile quaternization reaction from various elaborately designed di-imidazoles and PEG,which were then studied as green plasticizers for sustainable polylactide(PLA)material. 展开更多
关键词 Ionic liquids plasticizers POLYLACTIDE Chain structure Hydrogen bonds
原文传递
Hippocampal damage through foreign body placement in organotypic cultures leads to plastic responses in newly born granule cells
12
作者 Tassilo Jungenitz Lukas Frey +2 位作者 Sophia Kirscht Stephan W.Schwarzacher Angélica Zepeda 《Neural Regeneration Research》 2026年第3期1142-1150,共9页
The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves gl... The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves global alterations,making understanding plastic responses triggered by local damage difficult.One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche,the subgranular zone,and beyond neurogenesis,newly born granule cells may maintain a“young”phenotype throughout life,adding to the plastic nature of the structure.Here,we present a novel experimental model of local brain damage in organotypic entorhino-hippocampal cultures that results in the activation of adjacent newly born granule cells.A small piece of filter paper was placed on the surface of the granule cell layer of the dentate gyrus,which evoked a foreign body reaction of astrocytes,along with the activation of local young neurons expressing doublecortin.Forty-eight hours after foreign body placement,the number of doublecortin-immunoreactive cells increased in the subgranular zone in the direct vicinity of the foreign body,whereas overall increased doublecortin immunoreactivity was observed in the granule cell layer and molecular layer of the dentate gyrus.Foreign body placement in the pyramidal layer of the CA1 region evoked a comparable local astroglial reaction but did not lead to an increase in doublecortin-immunoreactive in either the CA1 region or the adjacent dentate gyrus.Seven days after foreign body placement in the dentate gyrus,the increase in doublecortin-immunoreactivity was no longer observed,indicating the transient activation of young cells.However,7 days after foreign body placement,the number of doublecortin-immunoreactive granule cells coimmunoreactive for calbindin was lower than that under the control conditions.As calbindin is a marker for mature granule cells,this result suggests that activated young cells remain at a more immature stage following foreign body placement.Live imaging of retrovirally green fluorescent protein-labeled newly born granule cells revealed the orientation and growth of their dendrites toward the foreign body placement.This novel experimental model of foreign body placement in organotypic entorhino-hippocampal cultures could serve as a valuable tool for studying both glial reactivity and neuronal plasticity,specifically of newly born neurons under controlled in vitro conditions. 展开更多
关键词 ASTROCYTE brain plasticity dendritic plasticity dentate gyrus focal brain injury hippocampus NEUROPLASTICITY NEUROREPAIR newborn granule cells regeneration REORGANIZATION
暂未订购
Neuronal plasticity and its role in Alzheimer's disease and Parkinson's disease
13
作者 Israt Jahan Mohammad Harun-Ur-Rashid +4 位作者 MdAminul Islam Farhana Sharmin Soad K.Al Jaouni Abdullah M.Kaki Samy Selim 《Neural Regeneration Research》 2026年第1期107-125,共19页
Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinso... Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease,this plasticity is disrupted,leading to cognitive and motor deficits.This review explores the mechanisms of neuronal plasticity and its effect on Alzheimer's disease and Parkinson's disease.Alzheimer's disease features amyloid-beta plaques and tau tangles that impair synaptic function,while Parkinson's disease involves the loss of dopaminergic neurons affecting motor control.Enhancing neuronal plasticity offers therapeutic potential for these diseases.A systematic literature review was conducted using databases such as PubMed,Scopus,and Google Scholar,focusing on studies of neuronal plasticity in Alzheimer's disease and Parkinson's disease.Data synthesis identified key themes such as synaptic mechanisms,neurogenesis,and therapeutic strategies,linking molecular insights to clinical applications.Results highlight that targeting synaptic plasticity mechanisms,such as long-term potentiation and long-term depression,shows promise.Neurotrophic factors,advanced imaging techniques,and molecular tools(e.g.,clustered regularly interspaced short palindromic repeats and optogenetics)are crucial in understanding and enhancing plasticity.Current therapies,including dopamine replacement,deep brain stimulation,and lifestyle interventions,demonstrate the potential to alleviate symptoms and improve outcomes.In conclusion,enhancing neuronal plasticity through targeted therapies holds significant promise for treating neurodegenerative diseases.Future research should integrate multidisciplinary approaches to fully harness the therapeutic potential of neuronal plasticity in Alzheimer's disease and Parkinson's disease. 展开更多
关键词 Alzheimer's disease long-term depression long-term potentiation NEUROINFLAMMATION neuronal plasticity Parkinson's disease synaptic plasticity
暂未订购
Metabolic reprogramming of astrocytes:Emerging roles of lactate
14
作者 Zeyu Liu Yijian Guo +2 位作者 Ying Zhang Yulei Gao Bin Ning 《Neural Regeneration Research》 2026年第2期421-432,共12页
Lactate serves as a key energy metabolite in the central nervous system,facilitating essential brain functions,including energy supply,signaling,and epigenetic modulation.Moreover,it links epigenetic modifications wit... Lactate serves as a key energy metabolite in the central nervous system,facilitating essential brain functions,including energy supply,signaling,and epigenetic modulation.Moreover,it links epigenetic modifications with metabolic reprogramming.Nonetheless,the specific mechanisms and roles of this connection in astrocytes remain unclear.Therefore,this review aims to explore the role and specific mechanisms of lactate in the metabolic reprogramming of astrocytes in the central nervous system.The close relationship between epigenetic modifications and metabolic reprogramming was discussed.Therapeutic strategies for targeting metabolic reprogramming in astrocytes in the central nervous system were also outlined to guide future research in central nervous system diseases.In the nervous system,lactate plays an essential role.However,its mechanism of action as a bridge between metabolic reprogramming and epigenetic modifications in the nervous system requires future investigation.The involvement of lactate in epigenetic modifications is currently a hot research topic,especially in lactylation modification,a key determinant in this process.Lactate also indirectly regulates various epigenetic modifications,such as N6-methyladenosine,acetylation,ubiquitination,and phosphorylation modifications,which are closely linked to several neurological disorders.In addition,exploring the clinical applications and potential therapeutic strategies of lactic acid provides new insights for future neurological disease treatments. 展开更多
关键词 ASTROCYTE epigenetic modifications inflammation LACTATE lactylation METABOLIC PLASTICITY regeneration treatment
暂未订购
Brain structural plasticity in large-brained mammals:Not only narrowing roads
15
作者 Marco Ghibaudi Alessandro Zanone Luca Bonfanti 《Neural Regeneration Research》 2026年第5期1669-1680,共12页
The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.H... The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.However,recent findings revealed that some forms of neural plasticity can show a reverse trend.Although plasticity is a well-preserved,transversal feature across the animal world,a variety of cell populations and mechanisms seem to have evolved to enable structural modifications to take place in widely different brains,likely as adaptations to selective pressures.Increasing evidence now indicates that a trade-off has occurred between regenerative(mostly stem cell–driven)plasticity and developmental(mostly juvenile)remodeling,with the latter primarily aimed not at brain repair but rather at“sculpting”the neural circuits based on experience.In particular,an evolutionary trade-off has occurred between neurogenic processes intended to support the possibility of recruiting new neurons throughout life and the different ways of obtaining new neurons,and between the different brain locations in which plasticity occurs.This review first briefly surveys the different types of plasticity and the complexity of their possible outcomes and then focuses on recent findings showing that the mammalian brain has a stem cell–independent integration of new neurons into pre-existing(mature)neural circuits.This process is still largely unknown but involves neuronal cells that have been blocked in arrested maturation since their embryonic origin(also termed“immature”or“dormant”neurons).These cells can then restart maturation throughout the animal's lifespan to become functional neurons in brain regions,such as the cerebral cortex and amygdala,that are relevant to high-order cognition and emotions.Unlike stem cell–driven postnatal/adult neurogenesis,which significantly decreases from small-brained,short-living species to large-brained ones,immature neurons are particularly abundant in large-brained,long-living mammals,including humans.The immature neural cell populations hosted in these complex brains are an interesting example of an“enlarged road”in the phylogenetic trend of plastic potential decreases commonly observed in the animal world.The topic of dormant neurons that covary with brain size and gyrencephaly represents a prospective turning point in the field of neuroplasticity,with important translational outcomes.These cells can represent a reservoir of undifferentiated neurons,potentially granting plasticity within the high-order circuits subserving the most sophisticated cognitive skills that are important in the growing brains of young,healthy individuals and are frequently affected by debilitating neurodevelopmental and degenerative disorders. 展开更多
关键词 adult neurogenesis AMYGDALA brain plasticity cerebral cortex comparative approach evolution immature neurons
暂未订购
Plasticity meets regeneration during innate spinal cord repair
16
作者 Amruta Tendolkar Mayssa H.Mokalled 《Neural Regeneration Research》 2026年第3期1136-1137,共2页
Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative... Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative vertebrates including urodele amphibians and teleost fish spontaneously reverse CNS damage.Teletost zebrafish(danio rerio)are tropical freshwater fish that proved to be an excellent vertebrate model of successful CNS regeneration.Differential neuronal,glial,and immune injury responses underlie disparate injury outcomes between highly regenerative zebrafish and poorly regenerative mammals.This article describes complications associated with neuronal repair following spinal cord injury(SCI)in poorly regenerative mammals and highlights intersecting modes of plasticity and regeneration in highly regenerative zebrafish(Figures 1 and 2).Comparative approaches evaluating immunoglial SCI responses were recently reviewed elsewhere(Reyes and Mokalled,2024). 展开更多
关键词 urodele amphibians central nervous system central nervous system cns REGENERATION vertebrate model PLASTICITY vertebrates teleost fish
暂未订购
Synapses and dendritic spines are eliminated in the primary visual cortex of mice subjected to chronic intraocular pressure elevation
17
作者 Xinyi Zhang Deling Li +6 位作者 Weiting Zeng Yiru Huang Zongyi Zhan Yuning Zhang Qinyuan Hu Lianyan Huang Minbin Yu 《Neural Regeneration Research》 2026年第3期1236-1248,共13页
Synaptic plasticity is essential for maintaining neuronal function in the central nervous system and serves as a critical indicator of the effects of neurodegenerative disease.Glaucoma directly impairs retinal ganglio... Synaptic plasticity is essential for maintaining neuronal function in the central nervous system and serves as a critical indicator of the effects of neurodegenerative disease.Glaucoma directly impairs retinal ganglion cells and their axons,leading to axonal transport dysfuntion,subsequently causing secondary damage to anterior or posterior ends of the visual system.Accordingly,recent evidence indicates that glaucoma is a degenerative disease of the central nervous system that causes damage throughout the visual pathway.However,the effects of glaucoma on synaptic plasticity in the primary visual cortex remain unclear.In this study,we established a mouse model of unilateral chronic ocular hypertension by injecting magnetic microbeads into the anterior chamber of one eye.We found that,after 4 weeks of chronic ocular hypertension,the neuronal somas were smaller in the superior colliculus and lateral geniculate body regions of the brain contralateral to the affected eye.This was accompanied by glial cell activation and increased expression of inflammatory factors.After 8 weeks of ocular hypertension,we observed a reduction in the number of excitatory and inhibitory synapses,dendritic spines,and activation of glial cells in the primary visual cortex contralateral to the affected eye.These findings suggest that glaucoma not only directly damages the retina but also induces alterations in synapses and dendritic spines in the primary visual cortex,providing new insights into the pathogenesis of glaucoma. 展开更多
关键词 chronic ocular hypertension dendritic spines GLAUCOMA glial cells NEUROINFLAMMATION NEURON retinal ganglion cells synaptic plasticity visual cortex visual pathway
暂未订购
Differential plasticity of excitatory and inhibitory reticulospinal fibers after spinal cord injury:Implication for recovery
18
作者 Rozaria Jeleva Carmen Denecke Muhr +1 位作者 Alina P.Liebisch Florence M.Bareyre 《Neural Regeneration Research》 2026年第5期2011-2020,共10页
The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ... The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury. 展开更多
关键词 GABAergic(vGat)fibers gait features glutamatergic(vGlut2)fibers PLASTICITY recovery of function reticulospinal tract spinal cord injury
暂未订购
轴向冲击载荷下深沟球轴承的损伤及响应研究
19
作者 金峰 蔡振清 +3 位作者 谢志浩 刘璐璐 赵振华 陈伟 《航空动力学报》 北大核心 2025年第4期182-191,共10页
针对轴向冲击载荷下转子轴承的损伤和响应问题开展了研究,设计了一种试验室用模拟航空发动机轴承损伤试验台,并建立了基于plastic kinematic(PK)本构模型的轴承冲击有限元模型,研究了低、中、高这3种冲击速度下深沟球轴承的损伤和响应... 针对轴向冲击载荷下转子轴承的损伤和响应问题开展了研究,设计了一种试验室用模拟航空发动机轴承损伤试验台,并建立了基于plastic kinematic(PK)本构模型的轴承冲击有限元模型,研究了低、中、高这3种冲击速度下深沟球轴承的损伤和响应。结果表明:有限元仿真计算结果与试验误差在10%以内,随着冲击速度增大,轴承滚珠的损伤形式由细长的凹痕增大为区域型的凹坑,损伤产生的原因为由于变形引起的滚珠与轴承内外圈之间的挤压;不同速度的冲击过程中,最大应力总是出现在轴承滚珠上,且滚珠与轴承内外圈之间接触力及变化规律基本一致;保持架接合处和与滚珠接触的内圈位置为轴向载荷冲击下的塑性变形较大位置处。 展开更多
关键词 轴向冲击载荷 深沟球轴承 plastic kinematic(PK)本构模型 宏观损伤 动态响应
原文传递
Obesogenic effects of six classes of emerging contaminants
20
作者 Siying Wu Chaoyu Tong Jing Liu 《Journal of Environmental Sciences》 2025年第5期252-272,共21页
There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic.However,there is no consensus on the obesogenic effects of emerging contaminants from a t... There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic.However,there is no consensus on the obesogenic effects of emerging contaminants from a toxicological and environmental perspective.The potential human exposure and experimental evidence for obesogenic effects of emerging contaminants need to be systematically discussed.The main objective of this review is to provide recommendations for further subsequent policy development following a critical analysis of the literature for humans and experimental animals exposed to emerging contaminants.This article reviews human exposure to emerging contaminants(with a focus on antimicrobials,preservatives,water and oil repellents,flame retardants,antibiotics and bisphenols)and the impact of emerging contaminants on obesity.These emerging contaminants have been widely detected in human biological samples.Epidemiological studies provide evidence linking exposure to emerging contaminants to the risks of obesity in humans.Studies based on animalmodels and adipose cells show the obesogenic effects of emerging contaminants and identify modes of action by which contaminants may induce changes in body fat accumulation and lipid metabolic homeostasis.Some knowledge gaps in this area and future directions for further investigation are discussed. 展开更多
关键词 Emerging contaminants OBESITY Human exposure PRESERVATIVES Flame retardants plasticizers ANTIBIOTICS
原文传递
上一页 1 2 174 下一页 到第
使用帮助 返回顶部