期刊文献+
共找到3,460篇文章
< 1 2 173 >
每页显示 20 50 100
The Future of Plasticizers: Biobased and Oligomeric
1
作者 Bob A.Howell 《Journal of Renewable Materials》 EI CAS 2024年第11期1857-1861,共5页
The deficiencies of popular phthalate plasticizers(ready migration from a polymer matrix into which they have been incorporated,flammability,environmental pollution,human health risks)have stimulated efforts to develo... The deficiencies of popular phthalate plasticizers(ready migration from a polymer matrix into which they have been incorporated,flammability,environmental pollution,human health risks)have stimulated efforts to develop new effective,nonmigrating,low-cost,nontoxic replacements.In the main,these have been based on readilyavailable,nontoxic biobased precursors.Some,including those prepared from plant oils,have been generated from biomaterials themselves.However,the more numerous and generally more effective have been generated from discrete compounds produced from various biomaterials.Several structural features of effective plasticizers have been recognized.Polar functionality is required to assure compatibility with a wide range of polymeric materials,including poly(vinyl chloride)(PVC),the most heavily plasticized polymer.A branched structure greatly enhances the effectiveness of compounds used as plasticizers.An oligomeric structure may strongly limit or prevent migration from a polymer matrix.Hyperbranched oligomers of defined structure derived from the readilyavailable,inexpensive,nontoxic biomonomers,glycerol and adipic acid contain all these features and are excellent plasticizers.They contain ester functionality,are highly branched,and display a large number of end groups,all of which contribute to their effectiveness as plasticizers. 展开更多
关键词 Sustainable plasticizers nonmigrating plasticizers nontoxic plasticizers branched plasticizers oligomeric plasticizers poly(ester)plasticizers
在线阅读 下载PDF
Synthesis of Cyclohexyl Acrylate Derivative and Its Evaluation as a Plasticizer for PVC
2
作者 Zhihong Wang Wei Wei +5 位作者 Song Wang Bingli Zhou Yingle Chen Liu Yang Qiaoguang Li Lei Zeng 《Journal of Polymer Materials》 2025年第2期449-462,共14页
In this study,3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate(ECC)and refined Camellia oleifera seed oil(RCOSO)obtained from saponification and acidified hydrolysis has been used as raw materials to perform ... In this study,3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate(ECC)and refined Camellia oleifera seed oil(RCOSO)obtained from saponification and acidified hydrolysis has been used as raw materials to perform ring-opening reactions for the preparation of cyclohexyl acrylate derivative(CAR).The structure of the synthesized product was characterized using infrared spectroscopy,Raman spectroscopy,and nuclear magnetic resonance spectroscopy.CAR was employed as a plasticizer to produce modified polyvinyl chloride(PVC)films,dioctyl phthalate plasticizer(DOP)used in reference samples to investigate the influence of different plasticizer molecular structures on the properties of PVC films.Observation suggested that(1)CAR plasticizer was successfully synthesized;(2)CAR can interact with PVC,exhibiting good compatibility;(3)PVC films contain CAR showed improved thermal stability,hydrophilicity,and tensile strength.Therefore,CAR has the potential to replace DOP as a plasticizer for PVC. 展开更多
关键词 Polyvinyl chloride Camellia oleifera seed oil biobased plasticizer
在线阅读 下载PDF
Direct Production of Sorbitol-Plasticized Bioplastic Film from Gracilaria sp.
3
作者 Ahmad Faldo Labanta Marbun +6 位作者 Hezekiah Lemuel Putra Zebua Fateha Fateha Rossy Choerun Nissa Yurin Karunia Apsha Albaina Iasya Riri Uswatun Annifah Amrul Amrul Yeyen Nurhamiyah 《Journal of Polymer Materials》 2025年第3期743-755,共13页
Conventional bioplastic production from seaweed often relies on extraction processes that are costly,time-consuming,and yield limited product.This study presents a direct fabrication method using Gracilaria sp.,a red ... Conventional bioplastic production from seaweed often relies on extraction processes that are costly,time-consuming,and yield limited product.This study presents a direct fabrication method using Gracilaria sp.,a red seaweed rich in polysaccharides,to produce bioplastic films without the need for extraction.Sorbitol was incorporated as a plasticizer at concentrations of 0%–10%(w/w)to modify film characteristics.Thermal analysis revealed improved stability at moderate sorbitol levels(5%–7%),while excessive plasticizer slightly reduced thermal resistance.Mechanical testing showed that sorbitol increased film flexibility and elongation at break,though tensile strength and stiffness declined.Tear strength followed a non-linear trend,with improvement observed at higher sorbitol concentrations.Seal strength also increased,peaking at 7%,indicating stronger interfacial bonding between film layers.Biodegradation tests demonstrated accelerated decomposition with increased sorbitol content,achieving complete degradation within 30 days at 10% concentration.Color analysis showed increased brightness and reduced yellowing,enhancing the visual quality of the films.These results confirm that direct conversion of bioplastic is both feasible and effective.Sorbitol plays a key role in tuning film properties,offering a low-cost,scalable pathway to biodegradable materials suitable for environmentally friendly packaging applications. 展开更多
关键词 Gracilaria sp. BIODEGRADABILITY direct seaweed production bioplastic film plastic waste alternatives
在线阅读 下载PDF
Chain Dynamics Heterogeneity in Plasticized Poly(vinyl butyral)(PVB) as Elucidated by Solid-State NMR 被引量:1
4
作者 Jing Lv Xu Chen +2 位作者 Zi-Shuo Wu Ya-Hui Li Wei Chen 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第1期113-124,I0010,共13页
The chain dynamics heterogeneity of the poly(vinyl butyral)(PVB) plasticized by triethylene glycol bis(2-ethylhexa noate)(TEG-EH) was investigated by various solid-state NMR techniques.The plasticized PVB shows two do... The chain dynamics heterogeneity of the poly(vinyl butyral)(PVB) plasticized by triethylene glycol bis(2-ethylhexa noate)(TEG-EH) was investigated by various solid-state NMR techniques.The plasticized PVB shows two domains in distinct molecular dynamics differences,namely,rigid and soft domains,where the latter is the plasticizer-rich domain.The time domain low field NMR was first used to investigate the dynamics heterogeneity of the plasticized PVB,and the results show the decreasing activated energy of components in the soft domain of plasticized PVB(E_a=20.2 kJ/mol) as compared with that of the pristine one(E_a=24.3 kJ/mol).Detailed dynamics heterogeneity was obtained by high-field NMR with site-specific features.The quadrupole-echo ~2H-NMR was adopted to elucidate the dynamics heterogeneity of the vinyl alcohol(VA) units,where only the hydroxyl group of VA is deuterated.The ~1H-^(13)C WISE NMR spectra show that there is not much difference in the mobility of the VB unit in PVB with and without plasticizer,whereas the glass transition temperature differed by approximately 53℃.This is further supported by Torchia's T_1 relaxation measurements.The origin of such an unusual phenomenon is attributed to the critical role of the remaining VA(~22%) in the soft domain,where the VA units locally aggregate through hydrogen bonding.Also,the existence of a mobility gradient in the VB unit has been demonstrated.Moreover,the mobility difference for VB with different stereo-geometry(meso or racemic conformation) is observed for the first time.This indicates the importance of modulating the ratio of meso over racemic VB for controlling the macroscopic perfo rmance of PVB. 展开更多
关键词 Poly(vinyl butyral) Dynamics heterogeneity plasticizeR Solid state NMR
原文传递
The effect of reactive plasticizer on viscoelastic and mechanical properties of solid rocket propellants based on different types of HTPB resin 被引量:1
5
作者 Tihomir Kovacevic Slavko Mijatov +3 位作者 Jelena Grzetic Suzana Cakic Bojana Fidanovski Sasa Brzic 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期66-77,共12页
Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitati... Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties. 展开更多
关键词 HTPB-based composite propellants Castor oil Reactive plasticizer Gel permeation chromatography Sol-gel analysis Mechanical and viscoelastic properties
在线阅读 下载PDF
Green Chemistry of Cellulose Acetate Membrane Plasticized by Citric Acid and Succinonitrile for Lithium-Ion Battery Application
6
作者 Christin Rina Ratri Qolby Sabrina +2 位作者 Adam Febriyanto Nugraha Sotya Astutiningsih Mochamad Chalid 《Journal of Renewable Materials》 EI CAS 2024年第11期1863-1878,共16页
Commercial lithium-ion batteries(LIBs)use polyolefins as separators.This has led to increased research on separators composed of renewable materials such as cellulose and its derivatives.In this study,the ionic conduc... Commercial lithium-ion batteries(LIBs)use polyolefins as separators.This has led to increased research on separators composed of renewable materials such as cellulose and its derivatives.In this study,the ionic conductivity of cellulose acetate(CA)polymer electrolyte membranes was enhanced via plasticization with citric acid and succinonitrile.The primary objective of this study was to evaluate the effectiveness of these plasticizers in improving cellulose-based separator membranes in LIBs.CA membranes were fabricated using solution casting technique and then plasticized with various concentrations of plasticizers.The structural,thermal,and electrochemical properties of the resulting membranes were characterized using Fourier Transform infrared(FTIR)spectroscopy,X-Ray Diffraction(XRD),Differential Scanning Calorimetry(DSC),Thermogravimetric Analysis(TGA),and Electrochemical Impedance Spectroscopy(EIS).The FTIR and XRD results confirmed the successful incorporation of citric acid and succinonitrile into the polymer matrix,while the TGA analysis demonstrated the enhanced thermal stability of the plasticized membranes.The shift in the glass transition temperature was determined by DSC analysis.Most notably,the EIS results revealed a significant increase in ionic conductivity,achieving a maximum of 2.7×10^(-5) S/cm at room temperature.This improvement was attributed to the effect of plasticizers,which facilitated the dissociation of lithium salts and increase the mobility of the lithium ions.The ionic conductivities of plasticized CA membranes are better than those of unmodified CA membranes and commercially available Celgard separator membranes:4.7×10^(-6) and 2.1×10^(-7) S/cm,respectively.These findings suggest that citric acid and succinonitrile are effective plasticizers for cellulose acetate membranes,making them promising substitutes for commercial polyolefin separators in LIB applications. 展开更多
关键词 CELLULOSE polymer electrolyte natural plasticizer citric acid SUCCINONITRILE
在线阅读 下载PDF
Research Progress of Environment Friendly Plasticizers for Cellulose Acetate Processing
7
作者 Rui Ding Mengyou Li 《Expert Review of Chinese Chemical》 2024年第2期32-36,共5页
Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular inte... Cellulose acetate(CA)is an important cellulose derivative that can undergo thermoplas-tic processing.Plasticizers can form stable hydrogen bonds with CA molecular chains,reducing intermolecular and intramolecular interactions,and play an important role in the melting processing of CA.In recent years,environmentally friendly plasticizers that are natural,non-toxic,odorless,low dissolution,and low migration have received increas-ing attention in plastic processing.This article reviews the research progress of environ-mentally friendly plasticizers such as natural plasticizers,ionic liquid plasticizers,citrate plasticizers,and polyethylene glycol plasticizers in the processing of cellulose acetate,and looks forward to the application prospects of environmentally friendly plasticizers. 展开更多
关键词 cellulose acetate environment protection plasticizers
在线阅读 下载PDF
Effects of plasticizer on removal of antibiotics and antibiotic resistance genes from agricultural soils via soil microbial fuel cells
8
作者 Huixiang WANG Xiaoshuai SHEN +5 位作者 Chen ZHANG Yi SHAO Hua LI Jian WU Yuli YANG Hailiang SONG 《Pedosphere》 CSCD 2024年第6期981-992,共12页
Soil microbial fuel cells(MFCs),a novel ecosystem technology,have recently been intensively studied for antibiotic-polluted soils.However,actual agricultural soils are always contaminated by mixed pollutants,especiall... Soil microbial fuel cells(MFCs),a novel ecosystem technology,have recently been intensively studied for antibiotic-polluted soils.However,actual agricultural soils are always contaminated by mixed pollutants,especially plasticizers from extensively used agricultural plastic films.The aim of this study was to investigate the effects of di-2-ethylhexyl phthalate(DEHP),a representative plasticizer in soil,on the removal of sulfadiazine(SDZ),a frequently detected antibiotic in natural environments,and antibiotic resistance genes(ARGs)and microbial community in soil MFCs.Soil MFCs maintained a good antibiotic removal ability even under the influence of residual DEHP and achieved a higher removal performance at higher DEHP concentrations due to enhanced power generation.Specifically,a higher DEHP concentration had a favorable effect on antibiotic removal in soil MFCs,with the SDZ concentration decreased in both the upper and lower layers(from 4.867±0.221 to 0.268±0.021 and 0.293±0.047 mg kg^(-1),respectively)of polluted soils.Moreover,a high DEHP concentration significantly promoted the abundance of bacteria associated with electricity generation compared with a lower DEHP concentration,resulting in the promotion of extracellular electron transfer and enhancing SDZ degradation.The increased ARG abundance may be caused by the enrichment of ARG potential hosts brought about by high DEHP concentration,likely due to the increased conjugative transfer frequencies of plasmid RP4 by decreasing cell membrane permeability and increasing reactive oxygen species content.The results revealed the ecological risk of residual DEHP in soil that promotes ARG transmission in soil MFCs,although it has the potential to reduce SDZ toxicity through horizontal gene transfer.We also highlight concerns regarding the management of antibiotics and plasticizers in soil.The negative effects of plasticizers on antibiotic removal should be carefully evaluated when using soil MFCs for the in-situ remediation of antibiotic-contaminated soil. 展开更多
关键词 antibiotic removal biodegradation conjugative transfer horizontal gene transfer mixed pollutants plastic film
原文传递
Surface sulfur vacancies enhanced electron transfer over Co-ZnS quantum dots for efficient degradation of plasticizer micropollutants by peroxymonosulfate activation 被引量:5
9
作者 Yuting Gu Tingting Gao +5 位作者 Fagen Zhang Chao Lu Wenrui Cao Ziwei Fu Chun Hu Lai Lyu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3829-3834,共6页
Peroxymonosulfate(PMS)activation in heterogeneous processes is a promising water treatment technology.Nevertheless,the high energy consumption and low efficiency during the reaction are ineluctable,due to electron cyc... Peroxymonosulfate(PMS)activation in heterogeneous processes is a promising water treatment technology.Nevertheless,the high energy consumption and low efficiency during the reaction are ineluctable,due to electron cycling rate limitation.Herein,a new strategy is proposed based on a quantum dots(QDs)/PMS system.Co-ZnS QDs are synthesized by a water phase coprecipitation method.The inequivalent lattice-doping of Co for Zn leads to the generation of surface sulfur vacancies(SVs),which modulates the surface of the catalyst to form an electronic nonequilibrium surface.Astonishingly,the plasticizer micropollutants can be completely degraded within only tens of seconds in the Co-Zn S QDs/PMS system due to this type of surface modulation.The interfacial reaction mechanism is revealed that pollutants tend to be adsorbed on the cobalt metal sites as the electron donors,where the internal electrons of pollutants are captured by the metal species and transferred to the surface SVs.Meanwhile,PMS adsorbed on the SVs is reduced to radicals by capturing electrons,achieving effective electron recovery.Dissolved oxygen(DO)molecules are also easily attracted to catalyst defects and are reduced to O_(2)^(·-),further promoting the degradation of pollutants. 展开更多
关键词 Peroxymonosulfate activation Sulfur vacancy Quantum dots ZNS plasticizeR
原文传递
Effect of Compounding of Sodium Tripolyphosphate and Super Plasticizers on the Hydration of α-calcium Sulfate Hemihydrate 被引量:4
10
作者 潘伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期737-744,共8页
The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-r... The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electronic probe micro analysis (EPMA), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) measurements. The experimental results show that compared with STP addition, compositing STP with polycarboxylate (PC) plasticizer, the final setting time is prolonged from 0.5h to 2hs. While formulating STP with naphthalene-based plasticizer (NAP) or sulfonate melamine formaldehyde plasticizer (SMF), the final setting time is reduced to quarter of an hour. Similar changes can also be found in the rate of exothermic hydration and hydration degree. Formulating STP with suitable addition of PC can enhance the strength, while compositing STP and NAP or SMF weakens the strength. Besides, adding STP or STP and SMF, obvious movement (more than 1ev) of binding energy of Ca2p1/2 and Ca2p3/2 is detected. Compared with STP addition, content of the characteristic element (P) of STP is cut down form 1.1% to 0.49% by compositing STP with SMF. Furthermore, as hydration age increases, hydration inhibition in the presence of admixtures weakens and even disappears within 56 h. 展开更多
关键词 α-calcium sulfate hemihydrate HYDRATION sodium tripolyphosphate plasticizeR ADSORPTION
原文传递
Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene(HTPB):Simultaneous tuning on low temperature behavior and processability 被引量:4
11
作者 Baodong Zhao Yinglei Wang +3 位作者 Fulei Gao Yajing Liu Weixiao Liu Feng Ding 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期364-371,共8页
Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane ... Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane chain parts, and systematically investigate their structure-property relationships.Results show that DNPEPs have impact sensitivities all higher than 25.2 J, thermal decomposition temperatures all higher than 254 ℃, and glass transition temperatures(T_(g)) lower than-90 ℃.Furthermore, the effects of DNPEPs as plasticizer are studied on hydroxyl terminated polybutadiene(HTPB) in detail, including the viscosity, glass transition temperatures and others. It is noteworthy that 2,2-dinitropropyl nonanoate(DNPNc) among these DNPEPs exhibits the most expected simultaneous tuning effects on both viscosity and T_(g) of HTPB systems, providing favorable potentials to replace the conventional plastizers as dioctyl sebacate(DOS) in the HTPB based propellants and explosives. 展开更多
关键词 Molecular simulation Experimental validation Preparation Energetic plasticizer Glass transition temperature Viscosity
在线阅读 下载PDF
Combustion of nitrate ester plasticized polyether propellants 被引量:6
12
作者 Xiao-ting YAN Zhi-xun XIA +1 位作者 Li-ya HUANG Xu-dong NA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第10期834-847,共14页
Nitrate ester plasticized polyether(NEPE)is a kind of high-energy solid propellant that has both good mechanical properties and high specific impulse.However,its unique composition makes its combustion mechanism diffe... Nitrate ester plasticized polyether(NEPE)is a kind of high-energy solid propellant that has both good mechanical properties and high specific impulse.However,its unique composition makes its combustion mechanism different from both double-base propellants and composite propellants.In order to study the combustion mechanism of NEPE propellants,we improved the free radical cracking model of previous research to make it capable of predicting the burning rate of NEPE propellants.To study the combustion characteristics and provide data support for the model,an experimental system was built and four kinds of NEPE propellants with different compositions and grain size distributions were tested.The results show that our modified model can reflect the combustion characteristics of NEPE propellants with an acceptable accuracy.The difference between the model and the experimental data is mainly caused by uncertain environmental factors and the ignorance of interactions between components.Both the experimental data and the results predicted by the model show that increasing the backpressure helps to increase the burning rate of NEPE propellants.Furthermore,the grain size of the oxidizer inside the NEPE propellant has a more severe impact on the burning rate but a lighter impact on the burning rate pressure exponent in comparison with the grain size of aluminum.For aluminum-free NEPE propellants,the reaction in the gas phase is dominant in the combustion process while adding aluminum into the propellant makes the solid phase dominant in the final stage.The combustion of fine aluminum particles near the burning surface generates heat feedback to the burning surface which evidently influences the surface temperature.However,the agglomeration of coarse aluminum particles has little effect on the burning surface temperature. 展开更多
关键词 Nitrate ester plasticized polyether(NEPE)propellant COMBUSTION Free radical model Burning rate
原文传递
Synthesis of aliphatic amidediol and used as a novel mixed plasticizer for thermoplastic starch 被引量:3
13
作者 Jian She Zhang Jiu Gao Yu Ying Wu Xiao Fei Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第4期395-398,共4页
In this paper,aliphatic amidediol was synthesized and mixed with glycerol used as a plasticizer for preparing thermoplastic starch(AGPTPS).The yield of aliphatic amidediol was 91%.FF-IR expressed that the mixture of... In this paper,aliphatic amidediol was synthesized and mixed with glycerol used as a plasticizer for preparing thermoplastic starch(AGPTPS).The yield of aliphatic amidediol was 91%.FF-IR expressed that the mixture of aliphatic amidediol and glycerol formed stronger and stable hydrogen bond with starch molecules compared to the native cornstarch.By scanning electron microscope(SEM)native cornstarch granules were proved to transfer to a homogeneous continuous system.After being stored for a period time at room temperature,the mechanical properties of AGPTPS were also studied.As a mixed plasticizer,aliphatic amidediol and glycerol would be practical to extend TPS application scopes. 展开更多
关键词 Thermoplastic starch Aliphatic amidediol GLYCEROL plasticizeR
在线阅读 下载PDF
Studies on Epoxidised Castor Oil as Co-Plasticizer with Epoxidised Soyabean Oil for PVC Processing 被引量:4
14
作者 Gouni Thirupathiah Sukanya Satapathy Aruna Palanisamy 《Journal of Renewable Materials》 SCIE 2019年第8期775-785,共11页
An acidic cation exchange resin has been used to prepare epoxidised castor oil(ECO)which was used as a co-plasticizer with epoxidised soyabean oil(ESBO)for processing polyvinyl chloride(PVC).The structure of ECO was c... An acidic cation exchange resin has been used to prepare epoxidised castor oil(ECO)which was used as a co-plasticizer with epoxidised soyabean oil(ESBO)for processing polyvinyl chloride(PVC).The structure of ECO was confirmed and its physico chemical properties were evaluated.PVC/(ESBO&ECO)blends were prepared by melt mixing and compression molded into sheets.The specimens were evaluated for tensile properties,impact strength and hardness.While the tensile strength did not vary much,the elongation reduced with the replacement of ESBO with ECO.Dynamic mechanical studies revealed that the glass transition temperature increased with incorporation of ECO,however,the storage modulus was not altered much.Replacing 20%of ESBO with ECO resulted in blends with desired thermal and mechanical properties without affecting the processability of PVC. 展开更多
关键词 PVC plasticizeR epoxidised castor oil tensile strength
在线阅读 下载PDF
Synthesis and Kinetics of Hydrogenated Rosin Dodecyl Ester as an Environmentally Friendly Plasticizer 被引量:3
15
作者 Qiaoguang Li Sheng Gong +4 位作者 Jie Yan Hongchao Hu Xugang Shu Hanqing Tong Zhiye Cai 《Journal of Renewable Materials》 SCIE EI 2020年第3期289-300,共12页
The plasticizer is an important polymer material additive.Non-toxic and environmentally friendly plasticizers are developed recently in order to decrease fossil fuel reserves,serious environmental pollution and the to... The plasticizer is an important polymer material additive.Non-toxic and environmentally friendly plasticizers are developed recently in order to decrease fossil fuel reserves,serious environmental pollution and the toxicity of phthalate esters.In this study,a new,efficient and environmentally friendly plasticizer of hydrogenated rosin dodecyl ester was prepared by an esterification reaction of hydrogenated rosin and dodecanol.The influences of different reaction conditions(including different catalysts,the catalyst concentration,the ratio of the reactants,reaction temperature,and reaction time)on the esterification yield are examined and discussed.Hydrogenated rosin dodecyl ester with 71.8%yield was synthesized under the optimized reaction conditions(1:0.8 molar ratio of rosin to dodecanol,1 mol%tetrabutyl titanate concentration,and 210℃for 6 h).The esterification reaction is a second-order reaction,and kinetic calculations showed that the activation energy is 39.77 KJ·mol^(−1).The structure of the hydrogenated rosin dodecyl ester was confirmed by FT-IR spectroscopy and^(13)C NMR spectrum.Besides,the thermal stability of target product(hydrogenated rosin dodecyl ester)was also tested by thermal gravimetric analysis(TGA),which showed a good thermal stability. 展开更多
关键词 Environmentally friendly plasticizer hydrogenated rosin dodecyl ester SYNTHESIS kinetics study
在线阅读 下载PDF
Thermoplastic Starch Prepared with Different Plasticizers: Relation between Degree of Plasticization and Properties 被引量:8
16
作者 左迎峰 GU Jiyou +1 位作者 TAN Haiyan 张彦华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期423-428,共6页
Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results... Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased. 展开更多
关键词 corn starch plasticizer thermoplastics degree of plasticization properties
原文传递
Effect of Plasticizer Poly(Ethylene Glycol)on the Crystallization Properties of Stereocomplex-Type Poly(Lactide Acid) 被引量:2
17
作者 CUI Li ZHANG Rundong +2 位作者 WANG Yahui ZHANG Chuanjie GUO Yi 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第5期420-428,共9页
The effects of the plasticizer poly(ethylene glycol)(PEG)on crystallization properties of equimolar poly(L-lactide)(PLLA)/poly(D-lactide)(PDLA)blends were investigated.Forma-tion of the stereocomplex-type poly(lactide... The effects of the plasticizer poly(ethylene glycol)(PEG)on crystallization properties of equimolar poly(L-lactide)(PLLA)/poly(D-lactide)(PDLA)blends were investigated.Forma-tion of the stereocomplex-type poly(lactide acid)(sc-PLA)crystallites was confirmed by Wide-angle X-ray diffraction(WAXD)and differential scanning calorimetry(DSC)analyses.Sc-PLA crystallites without any homochiral poly(lactide acid)(hc-PLA)formed,as the result of the incorporation of the plasticizer PEG(more than or equal to 10%(wt))at a processing temperature(240℃).More-over,when the Mw of PEG reached 1000 g·mol^(-1),the crystal-lizability of stereocomplex crystallites was the best.Isothermal crystallization kinetics further revealed that PEG could accelerate the crystallization rate of sc-PLA,with the optimum crystallization kinetic parameters being obtained at 10%(wt)PEG.Several crys-tallization kinetics equations were applied to describe the effect of PEG on the crystallization behavior of sc-PLA.The influence of PEG on the spherocrystal morphologies of sc-PLA was also inves-tigated using polarized optical microscopy. 展开更多
关键词 plasticizeR stereocomplex-type poly(lactide acid) CRYSTALLIZATION
原文传递
Effect of Plasticizers on Properties of Rice Straw Fiber Film 被引量:2
18
作者 Chen Hong-rui Chen Hai-tao +2 位作者 Liu Shuang Dun Guo-qiang Zhang Ying 《Journal of Northeast Agricultural University(English Edition)》 CAS 2014年第4期67-72,共6页
In order to improve the properties of rice straw fiber film, one factor contrast test method was employed. Plasticizer type was chosen as input variable, dry tension strength and elongation, wet tension strength and e... In order to improve the properties of rice straw fiber film, one factor contrast test method was employed. Plasticizer type was chosen as input variable, dry tension strength and elongation, wet tension strength and elongation, bursting strength and tearing strength were chosen as indexes. The results showed that there were significant differences among the means of dry tension strength, dry elongation and bursting strength of different plasticizers; there were not significant differences among the means of wet tension strength, wet elongation and tearing strength of different plasticizers; for dry tension strength and elongation, glycerol had a significant difference with sorbitol and PEG, no significant difference was observed between sorbitol and PEG, dry tension strength added glycerol had been reduced 6.8% compared with that added sorbitol, reduced 9.5% compared with that added PEG; elongation had been improved 6.1% and 9.4%, respectively; for bursting strength, sorbitol had a significant difference with glycerol and PEG, no significant difference was observed between glycerol and PEG; bursting strength added glycerol and added PEG had been improved 6.9% and 5.6%, respectively compared with that of the added sorbitol. The results provided a theoretical reference for further improving the straw fiber film manufacturing process. 展开更多
关键词 rice straw FILM plasticizeR comparative test
在线阅读 下载PDF
Synthesis of Bio-Plasticizer from Soybean Oil and Its Application in Poly(Vinyl Chloride) Films 被引量:2
19
作者 Xiao Luo Hongying Chu Mengqi Liu 《Journal of Renewable Materials》 SCIE EI 2020年第10期1295-1304,共10页
Herein,epoxidized soybean oil methyl ester(ESOM)plasticizer was synthesized for the preparation of plasticized poly(vinyl chloride)(PVC)films by the alcoholysis and epoxidation.The chemical structure of ESOM was inves... Herein,epoxidized soybean oil methyl ester(ESOM)plasticizer was synthesized for the preparation of plasticized poly(vinyl chloride)(PVC)films by the alcoholysis and epoxidation.The chemical structure of ESOM was investigated by infrared spectrum and 1 H nuclear magnetic resonance.The effect of content of ESOM and petroleum based plasticizer di-2-ethylhexyl phthalate(DEHP)on the performance of plasticized PVC films was studied.The result showed that substituting DEHP with ESOM can improve the thermal stability of plasticized PVC films.When the weight ratio of ESOM and PVC is fixed at 1:2,plasticized PVC film presents higher elongation at break(350.8%vs.345.1%)and lower tensile strength(14.21 MPa vs.15.8 MPa)compared with PVC plasticized with DEHP.ESOM showed less weight loss than DEHP in all solvents.The excellent migration resistance of ESOM is helpful to improve stability of plasticized PVC films.In all,the obtained bio-based plasticizer will be potential to replace petroleum based plasticizer DEHP in flexible PVC materials. 展开更多
关键词 Soybean oil epoxy plasticizer poly(vinyl chloride) glass transition temperature
在线阅读 下载PDF
Using an Inhibitor to Prevent Plasticizer Migration from Polyurethane Matrix to EPDM Based Substrate 被引量:1
20
作者 Hadi Rezaei-Vahidian Tohid Farajpour Mahdi Abdollahi 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2019年第7期681-686,共6页
The loss of adhesion between the propellant and insulator is one of the most important problems in solid propellant motors due to migration of plasticizer to interface of propellant and insulator. In this work, the po... The loss of adhesion between the propellant and insulator is one of the most important problems in solid propellant motors due to migration of plasticizer to interface of propellant and insulator. In this work, the polyurethane (PU) binder containing DOP plasticizer was used as a polymeric matrix and β-cyclodextrin (β-CD) was applied as inhibitor agent to prevent plasticizer migration from the PU matrix into the ethylene propylene diene monomer (EPDM) substrate. To increase the compatibility of β-CD and PU matrix, a derivative of β-CD has been synthesized using toluene diisocyanate (β-CD-TDI). The synthesized derivative was characterized by MALDI-MS and FTIR-ATR analyses. FTIR-ATR results confirmed the formation of bonding between β-CD and the polymeric network while the MALDIMS results showed that the synthesized derivative contained two β-CD and 7 TDI molecules bonded to β-CD. Investigation of the mechanical properties of PU modified by β-CD-TDI showed a decrease in tensile strength and an increase in elongation at break with increasing β-CD-TDI content. DMTA results showed a decrement in crosslinking density by increasing the β-CD-TDI content. Also, to investigate plasticizer migration, extraction of the DOP plasticizer from samples was performed using dichloromethane solvent and its concentration was measured by gas chromatography. The results of migration evaluation after four months showed that using β-CD as an inhibitor agent in the PU binder could prevent the migration of plasticizer to EPDM substrate. 展开更多
关键词 plasticizeR migration Β-CYCLODEXTRIN POLYURETHANE
原文传递
上一页 1 2 173 下一页 到第
使用帮助 返回顶部