The structure damage detection with spatial wavelets was approached. First, a plane stress problem, a rectangular plate containing a short crack under a distributed loading on the edge, was investigated. The displac...The structure damage detection with spatial wavelets was approached. First, a plane stress problem, a rectangular plate containing a short crack under a distributed loading on the edge, was investigated. The displacement response data along the parallel and perpendicular lines at different positions from the crack were analyzed with the Haar wavelet. The peak in the spatial variations of the wavelets indicates the direction of the crack. In addition, a transverse crack in a cantilever beam was also investigated in the same ways. For these problems, the different crack positions were also simulated to testify the effectiveness of the technique. All the above numerical simulations were processed by the finite element analysis code, ABACUS. The results show that the spatial wavelet is a powerful tool for damage detection, and this new technique sees wide application fields with broad prospects. (Edited author abstract) 14 Refs.展开更多
First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the gener...First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the general solution is so simplified that all physical quantities can be expressed by three 'harmonic functions'. Second, solutions of problems of a wedge loaded by point forces and point charge at the apex are also obtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.展开更多
The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However...The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system.展开更多
We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electri...We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electric feld gradient in the constitutive relations is used. Special attention is paid to the felds near the surface of the hole.展开更多
Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious...Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious load functions along the fictitious boundary were expressed in terms of basic spline functions, and the boundary-segment-least-squares method was proposed to eliminate the boundary residues obtained. By the above steps, numerical solutions to the integral equations can be achieved. Numerical examples are given to show the accuracy and efficiency of the proposed method.展开更多
This paper expresses potential function of complex variable in Fabere series and the solution in closed form is provided for the plane stress problems in piezoelectric media with elliptic inclusion. It is shown from t...This paper expresses potential function of complex variable in Fabere series and the solution in closed form is provided for the plane stress problems in piezoelectric media with elliptic inclusion. It is shown from the solution that the stress, strain, electric field intensity and electric displacement in inclusion are all constant. In addition, the electromechanical behavior of piezoelectric influence at the elliptic rim of the infinite matrix with only acting mechanical or electric load is discussed with numerical examples.展开更多
In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore...In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore, it is deduced that there is another way to solve problems in elasticity, i.e., by assumption of orthogonal curves of principal stresses.展开更多
In this paper.the boundary value problems of plane problems with a simply-ormultiply-connected domain for isotropic linear visca-elosticity are first established byterms of Airy stress function F(Xu t). Secondly some ...In this paper.the boundary value problems of plane problems with a simply-ormultiply-connected domain for isotropic linear visca-elosticity are first established byterms of Airy stress function F(Xu t). Secondly some identity relations betweendisplacements and stresses for plane problems of sisco-and elasticity are discussed indetait and some meaningful conclusions are obtained As an example the deformationresponse for viscoelastic plate with a small circular hote at the center is analyzed undera uniasial uniform extension.展开更多
Using complex variable methods in elasticity, this paper deals with the plane problems ot a finite disc containing an internal linear crack at any position under general loads, obtains the general forms of Complex str...Using complex variable methods in elasticity, this paper deals with the plane problems ot a finite disc containing an internal linear crack at any position under general loads, obtains the general forms of Complex stress functions and stress-intensity tactors expressed in terms of series, and to these problems disiusses three sposial cases,i.e.the cases of the crack under a uniform pressure, a uniform shear stress and the use of the dise rotating uniformly. In these cases the approximate formulas calcidating the stress-intensity factors are also presented. The calculated results shun that for the middle and.small orachs situated inside the disc and not near the external boundary,these approximate formulas give good or better approximation.展开更多
After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress func...After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.展开更多
A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natu...A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.展开更多
In this paper the method of reciprocal theorem is extended to find solutions of plane problems of elasticity of the rectangular plates with various edge conditions.First we give the basic solution of the plane problem...In this paper the method of reciprocal theorem is extended to find solutions of plane problems of elasticity of the rectangular plates with various edge conditions.First we give the basic solution of the plane problem of the rectangular plate with four edges built-in as the basic system and then find displacement expressions of the actual system by using the reciprocal theorem between the basic system and actual system with various edge conditions.When only displacement edge conditions exist, obtaining displacement expressions by means of the method of reciprocal theorem is actual. But in other conditions, when static force edge conditions or mixed ones exist, the obtained displacements are admissible. In order to find actual displacement, the minimum potential energy theorem must be applied.Calculations show that the method of reciprocal theorem is a simple, convenient and general one for the solution of plane problems of elasticity of the rectangular plates with various edge conditions. Evidently, it is a new method.展开更多
In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational ...In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational principle, it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficient. By this method, a quadrilateral noncompatible element with 8 degrees of freedom is derived for the solution of plane problem. Since Jacobi's transformation is not applied, the present element may degenerate into a triangle element. It is convenient to use the element in engineering. In this paper, the convergence is proved. Numerical examples are given at the endof this paper, which indicate satisfactory results of stress and displacements can be obtained and have higher numerical precision in nodes.展开更多
We employ fundamental equations of non-homogeneous elasticity and Fourierintegral transformations to obtain the general solutions of the stress function.On thebasis of these points of view and when the forces on the b...We employ fundamental equations of non-homogeneous elasticity and Fourierintegral transformations to obtain the general solutions of the stress function.On thebasis of these points of view and when the forces on the boundary are arbityary for nonhomogeneous half-plane problems with the Young’s modulus E(x)-E_0θxp[βx].accurate solutions are obtained At last with the degeneracy it is obtained that thefamous Boussnesq solution and this method is successful.展开更多
On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials ar...On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials are obtained. Two parametersbased on material constants a_1, a_2 are used to derive the rele-vant expressions in a real variable form. Additionally, an analyticalmethod of solving the singular integral for the internal stresses isintroduced, and the corresponding result are given. If a_1=a_2=1, allthe expres- sions obtained for orthotropy can be reduced to thecorresponding ones for isotropy. Because all these expres- sions andresults can be directly used for both isotropic problems andorthotropic problems, it is convenient to use them in engineeringwith the boundary element method (BEM).展开更多
In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, a...In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, as well as the concentrated force and moment at the free end. This solution can be applied for any form of gradient distribution. For the basic equations of plane problem, all the partial differential equations governing the stress field, electric, and magnetic potentials are derived. Then, the expressions of Airy stress, electric, and magnetic potential functions are assumed as quadratic polynomials of the longitudinal coordinate. Based on all the boundary conditions, the exact expressions of the three functions can be determined. As numerical examples, the material parameters are set as exponential and linear distributions in the thickness direction. The effects of the material parameters on the mechanical, electric, and magnetic fields of the cantilever beam are analyzed in detail.展开更多
The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field...The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field. This formulation allows to obtain analytical solutions in closed form for problems with relatively simple geometries, in addition to being particularly well-adapted to numerical approaches for more complicated cases. As an application, the first fundamental problem of Elasticity for the circular cylinder is investigated.展开更多
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat...The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.展开更多
The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so t...The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘The structure damage detection with spatial wavelets was approached. First, a plane stress problem, a rectangular plate containing a short crack under a distributed loading on the edge, was investigated. The displacement response data along the parallel and perpendicular lines at different positions from the crack were analyzed with the Haar wavelet. The peak in the spatial variations of the wavelets indicates the direction of the crack. In addition, a transverse crack in a cantilever beam was also investigated in the same ways. For these problems, the different crack positions were also simulated to testify the effectiveness of the technique. All the above numerical simulations were processed by the finite element analysis code, ABACUS. The results show that the spatial wavelet is a powerful tool for damage detection, and this new technique sees wide application fields with broad prospects. (Edited author abstract) 14 Refs.
文摘First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the general solution is so simplified that all physical quantities can be expressed by three 'harmonic functions'. Second, solutions of problems of a wedge loaded by point forces and point charge at the apex are also obtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.
基金Project supported by the National Natural Science Foundation of China (No.10571110)the Natural Science Foundation of Shandong Province of China (No.2003ZX12)
文摘The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system.
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State EducationMinistry.
文摘We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electric feld gradient in the constitutive relations is used. Special attention is paid to the felds near the surface of the hole.
文摘Non-singular fictitious boundary integral equations for orthotropic elastic plane problems were deduced according to boundary conditions by the techniques of singular-points-outside-domain. Then the unknown fictitious load functions along the fictitious boundary were expressed in terms of basic spline functions, and the boundary-segment-least-squares method was proposed to eliminate the boundary residues obtained. By the above steps, numerical solutions to the integral equations can be achieved. Numerical examples are given to show the accuracy and efficiency of the proposed method.
文摘This paper expresses potential function of complex variable in Fabere series and the solution in closed form is provided for the plane stress problems in piezoelectric media with elliptic inclusion. It is shown from the solution that the stress, strain, electric field intensity and electric displacement in inclusion are all constant. In addition, the electromechanical behavior of piezoelectric influence at the elliptic rim of the infinite matrix with only acting mechanical or electric load is discussed with numerical examples.
文摘In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore, it is deduced that there is another way to solve problems in elasticity, i.e., by assumption of orthogonal curves of principal stresses.
文摘In this paper.the boundary value problems of plane problems with a simply-ormultiply-connected domain for isotropic linear visca-elosticity are first established byterms of Airy stress function F(Xu t). Secondly some identity relations betweendisplacements and stresses for plane problems of sisco-and elasticity are discussed indetait and some meaningful conclusions are obtained As an example the deformationresponse for viscoelastic plate with a small circular hote at the center is analyzed undera uniasial uniform extension.
文摘Using complex variable methods in elasticity, this paper deals with the plane problems ot a finite disc containing an internal linear crack at any position under general loads, obtains the general forms of Complex stress functions and stress-intensity tactors expressed in terms of series, and to these problems disiusses three sposial cases,i.e.the cases of the crack under a uniform pressure, a uniform shear stress and the use of the dise rotating uniformly. In these cases the approximate formulas calcidating the stress-intensity factors are also presented. The calculated results shun that for the middle and.small orachs situated inside the disc and not near the external boundary,these approximate formulas give good or better approximation.
文摘After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.
基金supported by the National Natural Science Foundation of China(Nos.10932001,11072015, and 10761005)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ201010005003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20101102110016)the Ph.D.Innovation Foundation of Beijing University of Aeronautics and Astronautics(No.300351)
文摘A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.
文摘In this paper the method of reciprocal theorem is extended to find solutions of plane problems of elasticity of the rectangular plates with various edge conditions.First we give the basic solution of the plane problem of the rectangular plate with four edges built-in as the basic system and then find displacement expressions of the actual system by using the reciprocal theorem between the basic system and actual system with various edge conditions.When only displacement edge conditions exist, obtaining displacement expressions by means of the method of reciprocal theorem is actual. But in other conditions, when static force edge conditions or mixed ones exist, the obtained displacements are admissible. In order to find actual displacement, the minimum potential energy theorem must be applied.Calculations show that the method of reciprocal theorem is a simple, convenient and general one for the solution of plane problems of elasticity of the rectangular plates with various edge conditions. Evidently, it is a new method.
文摘In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational principle, it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficient. By this method, a quadrilateral noncompatible element with 8 degrees of freedom is derived for the solution of plane problem. Since Jacobi's transformation is not applied, the present element may degenerate into a triangle element. It is convenient to use the element in engineering. In this paper, the convergence is proved. Numerical examples are given at the endof this paper, which indicate satisfactory results of stress and displacements can be obtained and have higher numerical precision in nodes.
文摘We employ fundamental equations of non-homogeneous elasticity and Fourierintegral transformations to obtain the general solutions of the stress function.On thebasis of these points of view and when the forces on the boundary are arbityary for nonhomogeneous half-plane problems with the Young’s modulus E(x)-E_0θxp[βx].accurate solutions are obtained At last with the degeneracy it is obtained that thefamous Boussnesq solution and this method is successful.
文摘On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials are obtained. Two parametersbased on material constants a_1, a_2 are used to derive the rele-vant expressions in a real variable form. Additionally, an analyticalmethod of solving the singular integral for the internal stresses isintroduced, and the corresponding result are given. If a_1=a_2=1, allthe expres- sions obtained for orthotropy can be reduced to thecorresponding ones for isotropy. Because all these expres- sions andresults can be directly used for both isotropic problems andorthotropic problems, it is convenient to use them in engineeringwith the boundary element method (BEM).
基金supported by the National Natural Science Foundation of China(Nos.10772106 and11072138)the Shanghai Leading Academic Discipline Project(No.S30106)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20113108110005)the Natural Science Foundation Project of Shanghai(No.15ZR1416100)
文摘In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, as well as the concentrated force and moment at the free end. This solution can be applied for any form of gradient distribution. For the basic equations of plane problem, all the partial differential equations governing the stress field, electric, and magnetic potentials are derived. Then, the expressions of Airy stress, electric, and magnetic potential functions are assumed as quadratic polynomials of the longitudinal coordinate. Based on all the boundary conditions, the exact expressions of the three functions can be determined. As numerical examples, the material parameters are set as exponential and linear distributions in the thickness direction. The effects of the material parameters on the mechanical, electric, and magnetic fields of the cantilever beam are analyzed in detail.
文摘The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field. This formulation allows to obtain analytical solutions in closed form for problems with relatively simple geometries, in addition to being particularly well-adapted to numerical approaches for more complicated cases. As an application, the first fundamental problem of Elasticity for the circular cylinder is investigated.
基金the National Natural Science Foundation of China(No.11572210).
文摘The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.
文摘The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.