Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under dir...Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.展开更多
Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover pr...Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover prevention strategy is proposed,utilizing a single‐gimbal control moment gyro(SGCMG),to stabilize typical agricultural robots and prevent potential rollovers.To match the free oscillation of the pivot front axle,a novel recovery torque model of the coupled robot‐SGCMG system is established,in which two patterns are introduced to refine the rollover process with uncertain parameters.Additionally,a lateral stability index is adopted and analyzed to assess the hazard level of potential rollovers.Aimed at handling uncertain parameters and hazard levels,an adaptive backstepping control strategy is developed for real‐time anti‐rollover implementation.Within this strategy,control gains are adaptively tuned based on theoretical derivations,thereby suppressing rollover tendency while minimizing tuning effort.For verification,a scaled experimental platform,designed according to similarity theory,is constructed to ensure safety of personnel and equipment.Experimental results show that the proposed method can precisely regulate the output torque of the gyro,rapidly and effectively mitigating the risk of imminent rollover.This method provides a promising solution for wheeled robot stability and a theoretical basis for advanced safety control in agricultural robotics.展开更多
The wheeled bipedal robots have great application potential in environments with a mixture of structured and unstructured terrain. However, wheeled bipedal robots have problems such as poor balance ability and low mov...The wheeled bipedal robots have great application potential in environments with a mixture of structured and unstructured terrain. However, wheeled bipedal robots have problems such as poor balance ability and low movement level on rough roads. In this paper, a novel and low-cost wheeled bipedal robot with an asymmetrical five-link mechanism is proposed, and the kinematics of the legs and the dynamics of the Wheeled Inverted Pendulum (WIP) are modeled. The primary balance controller of the wheeled bipedal robot is built based on the Linear Quadratic Regulator (LQR) and the compensation method of the virtual pitch angle adjusting the Center of Mass (CoM) position, then the whole-body hybrid torque-position control is established by combining attitude and leg controllers. The stability of the robot’s attitude control and motion is verified with simulations and prototype experiments, which confirm the robot’s ability to pass through complex terrain and resist external interference. The feasibility and reliability of the proposed control model are verified.展开更多
Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt e...Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics.展开更多
In complex water environments,search tasks often involve multiple Autonomous Underwater Vehicles(AUVs),and a single centralized control cannot handle the complexity and computational burden of large-scale systems.Targ...In complex water environments,search tasks often involve multiple Autonomous Underwater Vehicles(AUVs),and a single centralized control cannot handle the complexity and computational burden of large-scale systems.Target search in complex water environments has always been a major challenge in the field of underwater robots.To address this problem,this paper proposes a multi-biomimetic robot fish collaborative target search method based on Distributed Model Predictive Control(DMPC).First,we established a bionic robot fish kinematic model and a multi-biomimetic robot fish communication model;second,this paper proposed a distributed model predictive control algorithm based on the distributed search theory framework,so that the bionic robot fish can dynamically adjust their search path according to each other’s position information and search status,avoid repeated coverage or missing areas,and thus improve the search efficiency;third,we conducted simulation experiments based on DMPC,and the results showed that the proposed method has a target search success rate of more than 90%in static targets,dynamic targets,and obstacle environments.Finally,we compared this method with Centralized Model Predictive Control(CMPC)and Random Walk(RW)algorithms.The DMPC approach demonstrates significant advantages,achieving a remarkable target search success rate of 94.17%.These findings comprehensively validate the effectiveness and superiority of the proposed methodology.It can be seen that DMPC can effectively dispatch multiple bionic robot fish to work together to achieve efficient search of vast waters.It can significantly improve the flexibility,scalability,robustness and cooperation efficiency of the system and has broad application prospects.展开更多
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ...The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.展开更多
This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link se...This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.展开更多
Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a pa...Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a path tracking control system has been designed.Within this system,a Line-of-Sight(LOS)guidance system is utilized to generate the desired heading angle during the path tracking process.A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method.Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller,which includes force/torque,and the input parameters of the Central Pattern Generator(CPG)network.Finally,the effectiveness of the proposed method is verified through simulation and experimentation.The results demonstrate that the robot exhibits good tracking accuracy,as well as stability and coordination in motion.The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.展开更多
To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses ve...To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses verify the robot's structural reliability and driving feasibility.Based on the leader-follower model,a triangular collaborative tracking model is developed,and a linear time-varying model predictive controll(LTV-MPC)is designed to achieve smooth and precise collaborative control.For obstacle crossing,an acceleration reference model and a gradient-based adaptive law are proposed,leading to a model reference adaptive controll(MRAC)that effectively suppresses vibrations and ensures synchronous control.Simulation results show that the MPC achieves a 0.415%overshoot and a 0.344 m steady-state accuracy,while also reducing the intensity of speed fluctuations by 35%.The MRAC ensures smooth obstacle-crossing speeds and adaptive strategy switching,validating the reliability and practicality of the rail-mounted robot under complex working conditions.展开更多
This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firs...This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firstly, to simplify the analysis and design of predefined-time controller, a Predefined-time Stability Criterion is proposed in the form of Composite Lyapunov Function (CLF-PSC). Besides simplicity, the CLF-PSC also has the advantage of less conservativeness due to utilization of initial state information. Secondly, a concept of Lp-Norm-Normalized Sign Function (LPNNSF) is proposed based on the CLF-PSC. Different from traditional norm-normalized sign function, the Lp-norm of LPNNSF can be selected arbitrarily according to practical control task requirements, which means that the proposed LPNNSF is more generalized and more convenient for calculation. Thirdly, a predefined-time disturbance observer and predefined-time controller are designed based on the LPNNSF. The observer has the property of predefined-time convergence to achieve quicker and more accurate estimation of the lumped disturbance. The controller has less control input and chattering phenomenon than traditional predefined-time controller. In addition, by introducing the observer into the controller, the closed-loop system enjoys high precision and strong robustness. Finally, the effectiveness of the proposed controller is verified by numerical simulations. By employing the controller, the MSRS can carry assembly modules to the desired pre-assembly configuration accurately within predefined time.展开更多
This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates senso...This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.展开更多
1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki ...1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki et al.,2010;Englsberger et al.,2015;Xie et al.,2020).With regard to model-based gait-generation methods for uphill and downhill terrain,Kuo(2007)simulated human gait using an inverted pendulum,which provided a circular trajectory for the COM rather than a horizontal trajectory.He found that a horizontal COM trajectory consumed more muscle energy.Massah et al.(2012)utilized a 3D LIPM and the concept of zero moment point(ZMP).They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform.展开更多
OBJECTIVE: To assess the effectiveness of a comprehensive rehabilitation approach combining Traditional Chinese Medicine Daoyin with lower limb robotics during the recovery phase of stroke patients.METHODS: Stroke pat...OBJECTIVE: To assess the effectiveness of a comprehensive rehabilitation approach combining Traditional Chinese Medicine Daoyin with lower limb robotics during the recovery phase of stroke patients.METHODS: Stroke patients meeting the specified criteria were randomly assigned to one of four groups using a random number table: Control group, Daoyin group, lower limb robot group(LLR group), and Daoyin and lower limb robot group(DLLR group). Each group received distinct treatments based on conventional rehabilitation training.The treatment duration spanned two weeks with two days of rest per week. Pre-and post-intervention assessments included various scales: Fugl-Meyer Assessment(FMA),Berg balance scale(BBS), Barthel index(BI), Fatigue Scale-14(FS-14), Pittsburgh sleep quality index(PSQI),Hamilton Anxiety Scale(HAMA), and Hamilton Depression Scale(HAMD).RESULTS: Statistically significant differences were observed in the lower limb function measured by FAM between the Control group(15 ± 5) and the DLLR group(18 ± 5)(P = 0.049). In the Barthel index, a statistically significant difference was noted between the Control group(54 ± 18) and the DLLR group(64 ± 11)(P = 0.041).Additionally, significant differences were found in the Berg balance scale between the Control group(21 ± 10)and the DLLR group(27 ± 8)(P = 0.024), as well as between the Control group(21 ± 10) and the LLR group(26 ± 10)(P = 0.048).CONCLUSION: The findings of this study suggest that the combined use of Daoyin and robotics not only enhances motor function in stroke patients but also has a positive impact on fatigue, sleep quality, and mood. This approach may offer a more effective rehabilitation strategy for stroke patients.展开更多
Performing diverse motor skills with a universal controller has been a longstanding challenge for legged robots.While motion imitation-based reinforcement learning(RL)has shown remarkable performance in reproducing de...Performing diverse motor skills with a universal controller has been a longstanding challenge for legged robots.While motion imitation-based reinforcement learning(RL)has shown remarkable performance in reproducing designed motor skills,the trained controller is only suitable for one specific type of motion.Motion synthesis has been well developed to generate a variety of different motions for character animation,but those motions only contain kinematic information and cannot be used for control.In this study,we introduce a control pipeline combining motion synthesis and motion imitation-based RL for generic motor skills.We design an animation state machine to synthesize motion from various sources and feed the generated kinematic reference trajectory to the RL controller as part of the input.With the proposed method,we show that a single policy is able to learn various motor skills simultaneously.Further,we notice the ability of the policy to uncover the correlations lurking behind the reference motions to improve control performance.We analyze this ability based on the predictability of the reference trajectory and use the quantified measurements to optimize the design of the controller.To demonstrate the effectiveness of our method,we deploy the trained policy on hardware and,with a single control policy,the quadruped robot can perform various learned skills,including automatic gait transitions,high kick,and forward jump.展开更多
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl...This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.展开更多
This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude ...This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models.展开更多
This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
基金supported by the National Natural Science Foundation of China(62073113,62003122,62303148)the Fundamental Research Funds for the Central Universities(MCCSE2023A01,JZ2023HGTA0201,JZ2023HGQA0109)the Anhui Provincial Natural Science Foundation(2308085QF204)
文摘Dear Editor,This letter considers the formation control of multiple mobile robot systems(MMRS)that only relies on the local observation information.A new distributed finite-time observer is proposed for MMRS under directed graph to estimate the relative information between each follower robot and the leader robot.Then the formation control problem is transformed into the tracking problem and a finite-time tracking controller is proposed based on the robot model feature.
基金supported by the National Natural Science Foundation of China(No.52175259)the 2115 Talent Development Program of China Agricultural University.
文摘Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover prevention strategy is proposed,utilizing a single‐gimbal control moment gyro(SGCMG),to stabilize typical agricultural robots and prevent potential rollovers.To match the free oscillation of the pivot front axle,a novel recovery torque model of the coupled robot‐SGCMG system is established,in which two patterns are introduced to refine the rollover process with uncertain parameters.Additionally,a lateral stability index is adopted and analyzed to assess the hazard level of potential rollovers.Aimed at handling uncertain parameters and hazard levels,an adaptive backstepping control strategy is developed for real‐time anti‐rollover implementation.Within this strategy,control gains are adaptively tuned based on theoretical derivations,thereby suppressing rollover tendency while minimizing tuning effort.For verification,a scaled experimental platform,designed according to similarity theory,is constructed to ensure safety of personnel and equipment.Experimental results show that the proposed method can precisely regulate the output torque of the gyro,rapidly and effectively mitigating the risk of imminent rollover.This method provides a promising solution for wheeled robot stability and a theoretical basis for advanced safety control in agricultural robotics.
基金supported in part by the National Natural Science Foundationof China under Grant(61801122)Natural Science Foundation of FujianProvince(2022J01542).
文摘The wheeled bipedal robots have great application potential in environments with a mixture of structured and unstructured terrain. However, wheeled bipedal robots have problems such as poor balance ability and low movement level on rough roads. In this paper, a novel and low-cost wheeled bipedal robot with an asymmetrical five-link mechanism is proposed, and the kinematics of the legs and the dynamics of the Wheeled Inverted Pendulum (WIP) are modeled. The primary balance controller of the wheeled bipedal robot is built based on the Linear Quadratic Regulator (LQR) and the compensation method of the virtual pitch angle adjusting the Center of Mass (CoM) position, then the whole-body hybrid torque-position control is established by combining attitude and leg controllers. The stability of the robot’s attitude control and motion is verified with simulations and prototype experiments, which confirm the robot’s ability to pass through complex terrain and resist external interference. The feasibility and reliability of the proposed control model are verified.
基金funded by the Natural Science Basis Research Plan in Shaanxi Province of China(Program No.2023-JC-QN-0659)General Specialized Scientific Research Program of the Shaanxi Provincial Department of Education(Program 23JK0349).
文摘Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics.
基金funded by National Natural Science Foundation of China(Nos.62473236,62073196).
文摘In complex water environments,search tasks often involve multiple Autonomous Underwater Vehicles(AUVs),and a single centralized control cannot handle the complexity and computational burden of large-scale systems.Target search in complex water environments has always been a major challenge in the field of underwater robots.To address this problem,this paper proposes a multi-biomimetic robot fish collaborative target search method based on Distributed Model Predictive Control(DMPC).First,we established a bionic robot fish kinematic model and a multi-biomimetic robot fish communication model;second,this paper proposed a distributed model predictive control algorithm based on the distributed search theory framework,so that the bionic robot fish can dynamically adjust their search path according to each other’s position information and search status,avoid repeated coverage or missing areas,and thus improve the search efficiency;third,we conducted simulation experiments based on DMPC,and the results showed that the proposed method has a target search success rate of more than 90%in static targets,dynamic targets,and obstacle environments.Finally,we compared this method with Centralized Model Predictive Control(CMPC)and Random Walk(RW)algorithms.The DMPC approach demonstrates significant advantages,achieving a remarkable target search success rate of 94.17%.These findings comprehensively validate the effectiveness and superiority of the proposed methodology.It can be seen that DMPC can effectively dispatch multiple bionic robot fish to work together to achieve efficient search of vast waters.It can significantly improve the flexibility,scalability,robustness and cooperation efficiency of the system and has broad application prospects.
基金supported in part by the National Natural Science Foundation of China under Grants 61991404,62103093 and 62473089the Research Program of the Liaoning Liaohe Laboratory,China under Grant LLL23ZZ-05-01+5 种基金the Key Research and Development Program of Liaoning Province of China under Grant 2023JH26/10200011the 111 Project 2.0 of China under Grant B08015,the National Key Research and Development Program of China under Grant 2022YFB3305905the Xingliao Talent Program of Liaoning Province of China under Grant XLYC2203130the Natural Science Foundation of Liaoning Province of China under Grants 2024JH3/10200012 and 2023-MS-087the Open Research Project of the State Key Laboratory of Industrial Control Technology of China under Grant ICT2024B12the Fundamental Research Funds for the Central Universities of China under Grants N2108003 and N2424004.
文摘The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.
基金supported by the DEEPCOBOT project under Grant 306640/O70 funded by the Research Council of Norway.
文摘This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.
基金supported by the National Natural Science Foundation of China No.E1102/52071108National Defense Science and Industry Bureau Stability Support Project No.JCKYS2020SXJQR-04Natural Science Foundation of Heilongjiang Province No.JJ2021JQ0075.
文摘Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a path tracking control system has been designed.Within this system,a Line-of-Sight(LOS)guidance system is utilized to generate the desired heading angle during the path tracking process.A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method.Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller,which includes force/torque,and the input parameters of the Central Pattern Generator(CPG)network.Finally,the effectiveness of the proposed method is verified through simulation and experimentation.The results demonstrate that the robot exhibits good tracking accuracy,as well as stability and coordination in motion.The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.
基金Supported by the Shaanxi Provincial Key Research and Development Program(2024GX-YBXM-288)the Science and Technology Project of Shaanxi Provincial Transportation Department(21-20K)the National Natural Science Foundation of China(52172324)。
文摘To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses verify the robot's structural reliability and driving feasibility.Based on the leader-follower model,a triangular collaborative tracking model is developed,and a linear time-varying model predictive controll(LTV-MPC)is designed to achieve smooth and precise collaborative control.For obstacle crossing,an acceleration reference model and a gradient-based adaptive law are proposed,leading to a model reference adaptive controll(MRAC)that effectively suppresses vibrations and ensures synchronous control.Simulation results show that the MPC achieves a 0.415%overshoot and a 0.344 m steady-state accuracy,while also reducing the intensity of speed fluctuations by 35%.The MRAC ensures smooth obstacle-crossing speeds and adaptive strategy switching,validating the reliability and practicality of the rail-mounted robot under complex working conditions.
基金co-supported by the National Natural Science Foundation of China(Nos.12372048,12102343)the Key Program of the National Natural Science Foundation of China(No.U2013206)+1 种基金the China Postdoctoral Science Foundation(No.2023M742835)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515011421).
文摘This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firstly, to simplify the analysis and design of predefined-time controller, a Predefined-time Stability Criterion is proposed in the form of Composite Lyapunov Function (CLF-PSC). Besides simplicity, the CLF-PSC also has the advantage of less conservativeness due to utilization of initial state information. Secondly, a concept of Lp-Norm-Normalized Sign Function (LPNNSF) is proposed based on the CLF-PSC. Different from traditional norm-normalized sign function, the Lp-norm of LPNNSF can be selected arbitrarily according to practical control task requirements, which means that the proposed LPNNSF is more generalized and more convenient for calculation. Thirdly, a predefined-time disturbance observer and predefined-time controller are designed based on the LPNNSF. The observer has the property of predefined-time convergence to achieve quicker and more accurate estimation of the lumped disturbance. The controller has less control input and chattering phenomenon than traditional predefined-time controller. In addition, by introducing the observer into the controller, the closed-loop system enjoys high precision and strong robustness. Finally, the effectiveness of the proposed controller is verified by numerical simulations. By employing the controller, the MSRS can carry assembly modules to the desired pre-assembly configuration accurately within predefined time.
文摘This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.
基金supported by the National Natural Science Foundation of China(No.12332023)the Zhejiang Provincial Natural Science Foundation of China(No.LY23E050010).
文摘1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki et al.,2010;Englsberger et al.,2015;Xie et al.,2020).With regard to model-based gait-generation methods for uphill and downhill terrain,Kuo(2007)simulated human gait using an inverted pendulum,which provided a circular trajectory for the COM rather than a horizontal trajectory.He found that a horizontal COM trajectory consumed more muscle energy.Massah et al.(2012)utilized a 3D LIPM and the concept of zero moment point(ZMP).They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform.
基金Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences:Study on the Scheme of Combining Brain Regulation and Training Techniques with Traditional Chinese Medicine Acupuncture Treatment for Hand Dysfunction After Stroke (CI2021A03010)The 13th Five-Year Project of China Academy of Chinese Medical Sciences:Studying on the Innovative Treatment of Limb Dysfunction after Stroke-Traditional Chinese Medicine Daoyin Combined with Lower Limb Robot Technology (ZZ10-015)。
文摘OBJECTIVE: To assess the effectiveness of a comprehensive rehabilitation approach combining Traditional Chinese Medicine Daoyin with lower limb robotics during the recovery phase of stroke patients.METHODS: Stroke patients meeting the specified criteria were randomly assigned to one of four groups using a random number table: Control group, Daoyin group, lower limb robot group(LLR group), and Daoyin and lower limb robot group(DLLR group). Each group received distinct treatments based on conventional rehabilitation training.The treatment duration spanned two weeks with two days of rest per week. Pre-and post-intervention assessments included various scales: Fugl-Meyer Assessment(FMA),Berg balance scale(BBS), Barthel index(BI), Fatigue Scale-14(FS-14), Pittsburgh sleep quality index(PSQI),Hamilton Anxiety Scale(HAMA), and Hamilton Depression Scale(HAMD).RESULTS: Statistically significant differences were observed in the lower limb function measured by FAM between the Control group(15 ± 5) and the DLLR group(18 ± 5)(P = 0.049). In the Barthel index, a statistically significant difference was noted between the Control group(54 ± 18) and the DLLR group(64 ± 11)(P = 0.041).Additionally, significant differences were found in the Berg balance scale between the Control group(21 ± 10)and the DLLR group(27 ± 8)(P = 0.024), as well as between the Control group(21 ± 10) and the LLR group(26 ± 10)(P = 0.048).CONCLUSION: The findings of this study suggest that the combined use of Daoyin and robotics not only enhances motor function in stroke patients but also has a positive impact on fatigue, sleep quality, and mood. This approach may offer a more effective rehabilitation strategy for stroke patients.
基金supported by the National Natural Science Foundation of China(No.12132013).
文摘Performing diverse motor skills with a universal controller has been a longstanding challenge for legged robots.While motion imitation-based reinforcement learning(RL)has shown remarkable performance in reproducing designed motor skills,the trained controller is only suitable for one specific type of motion.Motion synthesis has been well developed to generate a variety of different motions for character animation,but those motions only contain kinematic information and cannot be used for control.In this study,we introduce a control pipeline combining motion synthesis and motion imitation-based RL for generic motor skills.We design an animation state machine to synthesize motion from various sources and feed the generated kinematic reference trajectory to the RL controller as part of the input.With the proposed method,we show that a single policy is able to learn various motor skills simultaneously.Further,we notice the ability of the policy to uncover the correlations lurking behind the reference motions to improve control performance.We analyze this ability based on the predictability of the reference trajectory and use the quantified measurements to optimize the design of the controller.To demonstrate the effectiveness of our method,we deploy the trained policy on hardware and,with a single control policy,the quadruped robot can perform various learned skills,including automatic gait transitions,high kick,and forward jump.
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
文摘This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.
基金co-supported by the National Science Fund for Distinguished Young Scholars,China(No.52025054)the National Natural Science Foundation of China(No.61961015).
文摘This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models.
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.