To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling...To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management.展开更多
The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the dam...The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the damped gyroscopic double-beam system.In such systems,the orthogonality conditions of the undamped double-beam system are no longer applicable,rendering it impossible to decouple them in modal space using the modal superposition method(MSM) to obtain analytical solutions.Based on the complex modal method and state space method,this paper takes the damped pipe-in-pipe(PIP) system as an example to solve this problem.The concepts of the original system and adjoint system are introduced,and the orthogonality conditions of the damped PIP system are given in the state-space.Based on the derived orthogonality conditions,the transient and steady-state response solutions are obtained.In the numerical discussion section,the convergence and accuracy of the solutions are verified.In addition,the dynamic responses of the system under different excitations and initial conditions are studied,and the forward and reverse synchronous vibrations in the PIP system are discussed.Overall,the method presented in this paper provides a convenient way to analyze the dynamics of the damped gyroscopic double-beam system.展开更多
This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectri...This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes(PHPs),in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration.Experimental evaluations conducted under different discharge conditions demonstrate that the systemeffectivelymaintains battery temperatureswithin the optimal range of 20–40℃,with enhanced temperature uniformity and stability.While the PHP exhibited minimal impact at low power,its role became critical under higher discharge rates,ensuring efficient vapor condensation and pressure stability.The results highlight the potential of this passive cooling system to improve battery performance and safety,supporting its application in EV battery thermal management.Future work aims to optimize design parameters and evaluate real battery modules under ultra-fast charging scenarios.展开更多
Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for du...Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for dual safety.The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications.The results show that,firstly,the effects of coal pile heat production power and burial depth,along with heat pipe startup and heat transfer characteristics.At 60 cmburial depth,the condensation section dissipates 98%coal pile heat via natural convection.Secondly,for the temperature measurement error caused by the heat pipe heat transfer temperature difference,the correction method of“superimposing the measured value with the heat transfer temperature difference”is proposed,and the higher the coal temperature,the better the temperature measurement accuracy.Finally,the system can quickly(≤1 h)reduce the temperature of the coal pile to the spontaneous combustion point,significantly inhibiting the spontaneous combustion phenomenon,the maximum temperature does not exceed 49.2℃.Meanwhile,it utilizes waste heat to drive thermoelectric power generation,realizing self-supplied,unattended,and long-term accurate temperature measurement and warning.In a word,synergistic active heat dissipation and self-powered temperature monitoring-warning ensure dual coal pile thermal safety.展开更多
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen...Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe.展开更多
The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was pred...The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.展开更多
A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimen...A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation.展开更多
The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulatio...The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.展开更多
Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline tra...Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.展开更多
The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the ...The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the lift pipe, pump, buffer and flexible hose. By the discrete element method, the pipe is divided into some rigid elements that are linked by flexible connectors. First, two examples representing static analysis and dynamic analysis respectively are given to show that the DEM model is feasible. Then the three-dimensional DEM model is used for dynamic analysis of the mining pipe system. The dynamic motions of the entire mining pipe system under different work conditions are discussed. Some suggestions are made for the actual operation of deep-ocean mining systems.展开更多
The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors....The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors.This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS.Simulation results are compared with experimental data,demonstrating the accuracy of the calculation methodology.Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed.The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution,while temperatures increase with increase in axial height from the bottom to the top of the drain tank.In addition,natural convection intensity increases with increase in height of the heat pipes in the tank.Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient.This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.展开更多
The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. Th...The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.展开更多
A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distributi...A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations.In order to improve the properties of the air flow,in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system.As a result,the internal mechanisms influencing the uneven pressure drop in each branch are explored and three optimization schemes are proposed accordingly.The numerical results indicate that,for the original layout,the local pressure drop of the tee section accounts for approximately 74%of the total drop of the system,with other pressure drops depending on the specific branch considered.It is shown that after optimization,a roughly balanced flow resistance and flow rate can be obtained.Compared with the original layout,the pressure drop relating to different branches is significantly reduced.展开更多
A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step re...A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step response experiments. Experimental results showthat the feedback pipe makes the most important influence on the dynamic response speed ofload-sensing system. Its internal diameter should be optimized for given length of pipe. On theother hand, the stability of load-sensing pump is improved as the length of input pipe increases ina certain range. The influence of input pipe on the dynamic response speed is caused mainly by thepressure-wave travel time in the input pipe.展开更多
The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed u...The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed using shear stress transport (SST) model in ANSYS/CFX software. The simulation results identified the variation rule of velocity peak in T-junction with different frequencies and phase-differences, meanwhile, the eddy and velocity shock existed in the corner of the T-junction, and the limit working state was obtained. Although the eddy disappeared in Y-junction, the velocity shock and pressure loss were still too big. To address these faults, an arc-junction was designed. Based on the flow fields of arc-junction, the eddy in the junction corner disappeared and the maximum of velocity peak declined compared to T-and Y-junction. Additionally, 8 series of arc-junction with different radiuses were tested to get the variation rule of velocity peak. Through the computation of the pressure loss of three junctions, the arc-junction had a lowest loss value, and its pressure loss reached the minimum value when the curvature radius is 35.42 mm, meanwhile, the velocity shock has decreased in a low phase.展开更多
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi...The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system.展开更多
A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze...A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze the dynamic characteristics of the vertical pipe under the influence of moving velocity,current direction and wave.The simulation results show that the axial stress is dominant on the vertical pipe,its maximum is located at the pipe top,all stresses are much less than the allowable value of the vertical pipe and joint;the heave motion leads to violent fluctuation of the force and stress,but a period of 8 s is not likely to resonate the present pipe;against the current,0.50 m/s is the suggested moving velocity of the ship and miner,while along the current,the moving velocity can be slightly higher than 0.75 m/s.展开更多
This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe...This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe conveying fluid.Correspondingly,the natural frequency of axially FGM pipes conveying fluid is calculated using the differential quadrature method(DQM).A variable sensitivity analysis(VSA)is introduced to measure the effect of each random variable,and a mode sensitivity analysis(MSA)is introduced to acquire the importance ranking of failure modes.Then,an active learning Kriging(ALK)method is established to calculate the resonance failure probability and sensitivity indices,which greatly improves the application of resonance reliability analysis for pipelines in engineering practice.Based on the resonance reliability analysis method,the effects of fluid velocity,volume fraction and fluid density of axially FGM pipe conveying fluid on resonance reliability are analyzed.The results demonstrate that the proposed method has great performance in the anti-resonance analysis of pipes conveying fluid.展开更多
In water distribution systems,water leakage from cracked water pipes is a major concern for water providers.Generally,the relationship between the leakage rate and the water pressure can be modeled by a power function...In water distribution systems,water leakage from cracked water pipes is a major concern for water providers.Generally,the relationship between the leakage rate and the water pressure can be modeled by a power function developed from the orifice equation.This paper presents an approximate solution for the computation of the steady-state leakage rate through a longitudinal line crack of a water distribution pipe considering the surrounding soil properties.The derived solution agrees well with results of numerical simulations.Compared with the traditional models,the new solution allows assessment of all the parameters that related with leakage including the pressure head inside the pipe,hydraulic conductivity,crack size and its position,and pipe size and its depth.展开更多
基金funded by the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2404911)the Ministry of Higher Education,Malaysia through the Fundamental Research Grant Scheme:FRGS/1/2024/TK10/UMP/02/15 and Universiti Malaysia Pahang Al-Sultan Abdullah(RDU240117).
文摘To improve the thermal performance and temperature uniformity of battery pack,this paper presents a novel battery thermal management system(BTMS)that integrates oscillating heat pipe(OHP)technology with liquid cooling.The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser,enabling dual heat transfer pathways through liquid cooling plate and OHP.This study experimentally investigates the performance characteristics of the⊥-shaped OHP and hybrid BTMS.Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability,with optimal performance achieved at a 26.1%filling ratio.Acetone,as a single working fluid,exhibited superior heat transfer performance under low-load conditions compared to mixed fluids,while the acetone/ethanol mixture,forming a non-azeotropic solution,minimized temperature fluctuations.At 100 W,the⊥-shaped OHP with a horizontally arranged evaporator demonstrated better heat transfer performance than 2D-OHP designs.Compared to a liquid BTMS using water coolant at 280 W,the hybrid BTMS reduced the equivalent thermal resistance(RBTMS)and maximum temperature difference(ΔTmax)by 8.06%and 19.1%,respectively.When graphene nanofluid was used as the coolant in hybrid BTMS,the battery pack’s average temperature(Tb)dropped from 52.2℃ to 47.9℃,with RBTMS andΔTmax decreasing by 20.1%and 32.7%,respectively.These findings underscore the hybrid BTMS’s suitability for high heat load applications,offering a promising solution for electric vehicle thermal management.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the damped gyroscopic double-beam system.In such systems,the orthogonality conditions of the undamped double-beam system are no longer applicable,rendering it impossible to decouple them in modal space using the modal superposition method(MSM) to obtain analytical solutions.Based on the complex modal method and state space method,this paper takes the damped pipe-in-pipe(PIP) system as an example to solve this problem.The concepts of the original system and adjoint system are introduced,and the orthogonality conditions of the damped PIP system are given in the state-space.Based on the derived orthogonality conditions,the transient and steady-state response solutions are obtained.In the numerical discussion section,the convergence and accuracy of the solutions are verified.In addition,the dynamic responses of the system under different excitations and initial conditions are studied,and the forward and reverse synchronous vibrations in the PIP system are discussed.Overall,the method presented in this paper provides a convenient way to analyze the dynamics of the damped gyroscopic double-beam system.
基金National Recovery and Resilience Plan(NRRP)Mission 4 Component 2 Investment 1.5-Call for tender No.3277 of 30/12/2021 of Italian Ministry of University and Research funded by the European Union-NextGenerationEU(Award Number:Project code ECS00000033,Concession Decree No.1052 of 23 June 2022 adopted by the Italian Ministry of,CUP D93C22000460001,“Ecosystem for Sustainable Transition in Emilia-Romagna”(Ecosister)).
文摘This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles(EVs).The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes(PHPs),in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration.Experimental evaluations conducted under different discharge conditions demonstrate that the systemeffectivelymaintains battery temperatureswithin the optimal range of 20–40℃,with enhanced temperature uniformity and stability.While the PHP exhibited minimal impact at low power,its role became critical under higher discharge rates,ensuring efficient vapor condensation and pressure stability.The results highlight the potential of this passive cooling system to improve battery performance and safety,supporting its application in EV battery thermal management.Future work aims to optimize design parameters and evaluate real battery modules under ultra-fast charging scenarios.
基金supported by the Engineering Research Centre for Digital Grid Technology for Coordinating New Energy under Grant[Grant number 2021GCZX003]Yunnan Fundamental Research Projects under Grant[Grant number 202301CF070031]+2 种基金Hundred Talents Project 2023 under Grant[Grant number B0201001]2024 Distinctive Innovation Scientific Research Projects for Higher Education Institutions[Grant number 2024KTSCX157]Young Innovative Talent Project under Grant[Grant numbers K0223021,K0224014].
文摘Targeting spontaneous coal combustion during stacking,we developed an efficient heat dissipation&self-supplied wireless temperature measurement system(SPWTM)with gravity heat pipe-thermoelectric integration for dual safety.The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications.The results show that,firstly,the effects of coal pile heat production power and burial depth,along with heat pipe startup and heat transfer characteristics.At 60 cmburial depth,the condensation section dissipates 98%coal pile heat via natural convection.Secondly,for the temperature measurement error caused by the heat pipe heat transfer temperature difference,the correction method of“superimposing the measured value with the heat transfer temperature difference”is proposed,and the higher the coal temperature,the better the temperature measurement accuracy.Finally,the system can quickly(≤1 h)reduce the temperature of the coal pile to the spontaneous combustion point,significantly inhibiting the spontaneous combustion phenomenon,the maximum temperature does not exceed 49.2℃.Meanwhile,it utilizes waste heat to drive thermoelectric power generation,realizing self-supplied,unattended,and long-term accurate temperature measurement and warning.In a word,synergistic active heat dissipation and self-powered temperature monitoring-warning ensure dual coal pile thermal safety.
基金financially supported by the National Natural Science Foundation of China(52130109)。
文摘Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe.
文摘The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.
基金Supported by the National Natural Science Foundation of China(U1737104)the Natural Science Foundation of Jiangsu Province(BK20170082)+1 种基金the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)(U1501501)the Postgraduate Research&Practice Innovation Program of Jiangsu Province
文摘A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation.
基金This project is supported by National Natural Science Foundation of China(No.59875076).
文摘The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.
基金Project(50490270) supported by the National Natural Science Foundation of China
文摘Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.
基金This researchis part of a project financially supported by the National Natural Science Goundation of China(GrantNo.50275152)National Deep-Sea Technology Project of Development and Research.(Grant No.DY105-3-2-2)
文摘The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the lift pipe, pump, buffer and flexible hose. By the discrete element method, the pipe is divided into some rigid elements that are linked by flexible connectors. First, two examples representing static analysis and dynamic analysis respectively are given to show that the DEM model is feasible. Then the three-dimensional DEM model is used for dynamic analysis of the mining pipe system. The dynamic motions of the entire mining pipe system under different work conditions are discussed. Some suggestions are made for the actual operation of deep-ocean mining systems.
基金supported by the National Key R&D Program of China(No.2019YFB1901100)the National Natural Science Foundation of China(No.11705138)the China National Postdoctoral Program for Innovative Talents(No.BX201600124)。
文摘The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors.This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS.Simulation results are compared with experimental data,demonstrating the accuracy of the calculation methodology.Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed.The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution,while temperatures increase with increase in axial height from the bottom to the top of the drain tank.In addition,natural convection intensity increases with increase in height of the heat pipes in the tank.Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient.This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.
基金supported by the Shandong Provincial Key Research and Development Program- Major Scientific and Technological Innovation Project (No. 2020CXGC011406)the R&D project of Suzhou Water Resource and Management (No. 2020011)the National Water Major Project (Nos. 2018ZX07111-006 , 2012ZX07404-002 , 2012ZX07403-001)。
文摘The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.
文摘A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations.In order to improve the properties of the air flow,in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system.As a result,the internal mechanisms influencing the uneven pressure drop in each branch are explored and three optimization schemes are proposed accordingly.The numerical results indicate that,for the original layout,the local pressure drop of the tee section accounts for approximately 74%of the total drop of the system,with other pressure drops depending on the specific branch considered.It is shown that after optimization,a roughly balanced flow resistance and flow rate can be obtained.Compared with the original layout,the pressure drop relating to different branches is significantly reduced.
基金This project is supported by National Natural Science Foundation of China(No.59875076).
文摘A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step response experiments. Experimental results showthat the feedback pipe makes the most important influence on the dynamic response speed ofload-sensing system. Its internal diameter should be optimized for given length of pipe. On theother hand, the stability of load-sensing pump is improved as the length of input pipe increases ina certain range. The influence of input pipe on the dynamic response speed is caused mainly by thepressure-wave travel time in the input pipe.
基金supported by the National Natural Science Foundation of China(No.51175014)
文摘The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed using shear stress transport (SST) model in ANSYS/CFX software. The simulation results identified the variation rule of velocity peak in T-junction with different frequencies and phase-differences, meanwhile, the eddy and velocity shock existed in the corner of the T-junction, and the limit working state was obtained. Although the eddy disappeared in Y-junction, the velocity shock and pressure loss were still too big. To address these faults, an arc-junction was designed. Based on the flow fields of arc-junction, the eddy in the junction corner disappeared and the maximum of velocity peak declined compared to T-and Y-junction. Additionally, 8 series of arc-junction with different radiuses were tested to get the variation rule of velocity peak. Through the computation of the pressure loss of three junctions, the arc-junction had a lowest loss value, and its pressure loss reached the minimum value when the curvature radius is 35.42 mm, meanwhile, the velocity shock has decreased in a low phase.
基金Project supported by the National Natural Science Foundation of China(No.12002195)the Pujiang Project of Shanghai Science and Technology Commission of China(No.20PJ1404000)。
文摘The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system.
基金Project (DY105-03-02-02) supported by the Deep-Ocean Technology Development Item of China
文摘A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze the dynamic characteristics of the vertical pipe under the influence of moving velocity,current direction and wave.The simulation results show that the axial stress is dominant on the vertical pipe,its maximum is located at the pipe top,all stresses are much less than the allowable value of the vertical pipe and joint;the heave motion leads to violent fluctuation of the force and stress,but a period of 8 s is not likely to resonate the present pipe;against the current,0.50 m/s is the suggested moving velocity of the ship and miner,while along the current,the moving velocity can be slightly higher than 0.75 m/s.
基金The funding was provided by Laboratory Fund (Grant No.SYJJ200320).
文摘This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe conveying fluid.Correspondingly,the natural frequency of axially FGM pipes conveying fluid is calculated using the differential quadrature method(DQM).A variable sensitivity analysis(VSA)is introduced to measure the effect of each random variable,and a mode sensitivity analysis(MSA)is introduced to acquire the importance ranking of failure modes.Then,an active learning Kriging(ALK)method is established to calculate the resonance failure probability and sensitivity indices,which greatly improves the application of resonance reliability analysis for pipelines in engineering practice.Based on the resonance reliability analysis method,the effects of fluid velocity,volume fraction and fluid density of axially FGM pipe conveying fluid on resonance reliability are analyzed.The results demonstrate that the proposed method has great performance in the anti-resonance analysis of pipes conveying fluid.
基金Project (No. 2012AA062608) supported by the National High-Tech R&D Program (863) of China
文摘In water distribution systems,water leakage from cracked water pipes is a major concern for water providers.Generally,the relationship between the leakage rate and the water pressure can be modeled by a power function developed from the orifice equation.This paper presents an approximate solution for the computation of the steady-state leakage rate through a longitudinal line crack of a water distribution pipe considering the surrounding soil properties.The derived solution agrees well with results of numerical simulations.Compared with the traditional models,the new solution allows assessment of all the parameters that related with leakage including the pressure head inside the pipe,hydraulic conductivity,crack size and its position,and pipe size and its depth.