The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic...The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions.展开更多
In the present work, bacterial soil communities of different grapevine exploitation samples are studied in order to elucidate the possible influence of different agrarian management techniques (use of fertilizers, ir...In the present work, bacterial soil communities of different grapevine exploitation samples are studied in order to elucidate the possible influence of different agrarian management techniques (use of fertilizers, irrigation with river water) may have on the rhizospheric microbiome of Vitis vinifera plants. Therefore, it is postulated the Cenophenoresistome as a novel methodology to evaluate complex communities' global resistance against different antibiotics, by using and adjusting a serial of techniques traditionally applied to evaluate a monospecific population's resistance against antibiotics (Vitek, ATB and disk diffusion methods). Likewise, the metabolic profile (CLPP: comunity level physiological profile) of bacterial communities is studied by Biolog ECO. In relation to the functional structure of the bacterial communities, it is observed that the metabolic profile (diversity, kinetics and CLPP) of unexploited soils differs from soils under anthropic influence. It is discussed the causes of resistance in the human clinic antibiotic treatment based on the agrarian management, especially with the contamination transmitted by irrigation water, which could be associated with changes in edaphic communities. The results obtained in the present study through two different approaches (Cenophenoresistome and metabolic profiles) are consistent with each other, suggesting that both methods can be good bioindicators of the state of humankind-altered soils that host natural ecosystems. Likewise, the concept of Cenophenoresistome is proposed as a bioindicator of soil response to alteration processes, as well as a possible predictor of its evolution in edaphic remediation processes.展开更多
基金Supported by the National Basic Research Program (973 Program) of China (No. 2006CB403206)the Key Project in the NationalScience & Technology Pillar Program in the Eleventh Five-year Plan Period of China (Nos. 2006BAC01A09 and 2006BAD03A1006)National Natural Science Foundation of China (No. 30872076)
文摘The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions.
文摘In the present work, bacterial soil communities of different grapevine exploitation samples are studied in order to elucidate the possible influence of different agrarian management techniques (use of fertilizers, irrigation with river water) may have on the rhizospheric microbiome of Vitis vinifera plants. Therefore, it is postulated the Cenophenoresistome as a novel methodology to evaluate complex communities' global resistance against different antibiotics, by using and adjusting a serial of techniques traditionally applied to evaluate a monospecific population's resistance against antibiotics (Vitek, ATB and disk diffusion methods). Likewise, the metabolic profile (CLPP: comunity level physiological profile) of bacterial communities is studied by Biolog ECO. In relation to the functional structure of the bacterial communities, it is observed that the metabolic profile (diversity, kinetics and CLPP) of unexploited soils differs from soils under anthropic influence. It is discussed the causes of resistance in the human clinic antibiotic treatment based on the agrarian management, especially with the contamination transmitted by irrigation water, which could be associated with changes in edaphic communities. The results obtained in the present study through two different approaches (Cenophenoresistome and metabolic profiles) are consistent with each other, suggesting that both methods can be good bioindicators of the state of humankind-altered soils that host natural ecosystems. Likewise, the concept of Cenophenoresistome is proposed as a bioindicator of soil response to alteration processes, as well as a possible predictor of its evolution in edaphic remediation processes.