Hydraulic fracturing(HF)has achieved significant commercial success in unconventional oil and gas development.However,it has the potential to induce fault slip.This study investigates the physical mechanisms underlyin...Hydraulic fracturing(HF)has achieved significant commercial success in unconventional oil and gas development.However,it has the potential to induce fault slip.This study investigates the physical mechanisms underlying potential fault slip triggered by HF operations under varying geological and operational constraints.First,we elucidate the relationship between the critical stress state and the elastic modulus of the fault,and refine a formula for the maximum crustal stress difference on critically stressed faults,including stress concentration,friction,and dip.Second,we compare the role of injected fluid in permeable faults with that in impermeable faults,and demonstrate that fault slips can be triggered by a combination of friction decrease and pore pressure increase,even after ceasing injection.Specifically,we reveal that friction decline dominates induced fault slip on high permeable and hydraulically connected fault.Third,based on experimental results and theoretical analysis,we quantify the influence region of stress transfer under different conditions of well location and injection pressure.The results reveal that the elastic modulus of the fault controls the stress concentration on the fault plane.The dip of the fault and the stress concentration jointly determine the maximum crustal stress difference required for failure in critically stressed reverse faults.Thus,our study is more accurate in estimating the proximity of the in-situ stress to the critical state,compared with traditional methods.For critical reverse faults,the risk of induced slip is positively correlated with both injection pressure and friction of fault plane.When the injection pressure(PI)is 100 MPa and the friction(μ)is 0.8,the safe distance from injection point to critically stressed faults along the direction of maximum principal stress and maximum principal stress(dH and dv)should exceed 25 and 18 times as the hydraulic fracture halflength.When PI is 100 MPa andμis 0.6,dH and dv are 23 and 17 times as the hydraulic fracture halflength,respectively.When PI is 60 MPa andμis 0.6,dH and dv are 18 and 13 times as the hydraulic fracture half-length,respectively.The works enhance our understanding of HF-induced fault slip and potentially guide designs of the shale gas well location and trajectory for safer production.展开更多
In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a mo...In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a model material suitable for analysing the deformation and failure of reservoir landslides,based on the existing research foundation of analogous materials,5 materials and 5 physical-mechanical parameters were selected to design an orthogonal test.The factor sensitivity of each component ratio and its influence on the physical-mechanical indices were studied by range analysis and stepwise regression analysis,and the proportioning method was determined.Finally,the model material was developed,and a model test was carried out considering Huangtupo as the prototype application.The results showed that(1)the model material composed of sand,barite powder,glass beads,clay,and bentonite had a wide distribution of physical-mechanical parameters,which could be applied to model tests under different conditions;(2)the physical-mechanical parameters of analogous materials matched the application prototype;and(3)the mechanical properties and seepage performance of the model material sample met the requirements of reservoir landslide model tests,which could be used to simulate landslide evolution and analyse the deformation process.展开更多
This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a ...This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.展开更多
Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that ...Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that exhibit the high brittleness and strength characteristics of deep hard rock to construct physical models representing different types of structural planes,including composite,exposed,non-exposed,and throughgoing structural planes.Physical simulation experiments were conducted on structuretype rockbursts in deep horseshoe-shaped tunnels,focusing on strain differentiation characteristics,critical triggering conditions,critical crack opening displacement,the incubation process,the reduction effects of structural planes on failure intensity,and formation mechanisms.These experiments were complemented by acoustic and optical monitoring,as well as discrete element numerical simulations,to provide a comprehensive analysis.The results revealed that the most significant strain heterogeneity in the surrounding rock occurs at the tip of the structural plane along the tunnel's minimum principal stress direction,driven by the combined effects of tensile and shear forces.We quantitatively determined the critical stress and strain conditions for structure-type rockbursts and evaluated the intensity of rockbursts induced by different structural planes using critical crack opening displacement(COD)values,the uniformity coefficient,and the curvature coefficient.Analysis of acoustic emission events,including frequency,amplitude,and b-value,indicated that the macro-fracture process is governed by both the principal stress differential and the characteristics of the structural plane.Furthermore,using the bearing capacity reduction coefficient,we found that exposed structural planes have the most significant weakening effect on rock mass strength,followed by non-exposed and throughgoing structural planes.The analysis of average frequency(AF)and rise angle(RA)parameters revealed a close correlation between the failure modes of structure-type rockbursts,the rock mass structure,and the stress levels.These findings provide critical theoretical support for the prediction and prevention of structure-type rockburst disasters.展开更多
The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in so...The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in southwestern China as the engineering prototype,large-scale three-dimensional(3D)physical model tests were conducted on a 3D-printed complex geological model containing two faults.Based on the selfdeveloped 3D loading system and excavation device,the macroscopic failure of fault-slip rockbursts was simulated indoors.The stress,strain,and fracturing characteristics of the surrounding rock near the two faults were systematically evaluated during excavation and multistage loading.The test results effectively revealed the evolution and triggering mechanism of fault-slip rockbursts.After the excavation of a highstress tunnel,stress readjustment occurred.Owing to the presence of these two faults,stress continued to accumulate in the rock mass between them,leading to the accumulation of fractures.When the shear stress on a fault surface exceeded its shear strength,sudden fault slip and dislocation occurred,thus triggering rockbursts.Rockbursts occurred twice in the vault between the two faults,showing obvious intermittent characteristics.The rockburst pit was controlled by two faults.When the faults remained stable,tensile failure predominated in the surrounding rock.However,when the fault slip was triggered,shear failure in the surrounding rock increased.These findings provide valuable insights for enhancing the comprehension of fault-slip rockbursts.展开更多
Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this iss...Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this issue,we selected the Wangjiashan(WJS)landslide in the Baihetan Reservoir area as a case study to evaluate LGIW hazards and develop corresponding mitigation strategies.Using 2D physical model tests and 3D numerical simulations,we established a 3D hazard assessment method for LGIWs based on 2D experimental results.This method confirmed the effectiveness of slope-cutting engineering in mitigating LGIW hazards.Based on this assessment framework,we proposed a novel approach for LGIW risk reduction.The results showed that the maximum wave amplitude reached 19.64 m in the Jinsha River channel,and the maximum run-up was 11.5 m in the XiangBiLing(XBL)community,indicating a substantial LGIW threat to the area.By reducing the rear edge of the sliding mass to 920 m above sea level(asl),the LGIW risk to the XBL community could be lowered to a tolerable level.Compared with traditional landslide prevention and control measures,the proposed mitigation scheme can reduce excavation costs by approximately 37 million CNY,making it a more scientifically sound and economically feasible solution.We explored the concept and the implementation of LGIW risk mitigation in depth,offering new insights for global LGIW risk management.This case study enhances our understanding of LGIW hazard prevention and provides valuable guidance for policymaking and engineering practices in similar geological settings worldwide.展开更多
Due to space constraints in urban areas,metro tunnels are typically constructed in pairs,with a small clearance.The interaction between twin tunnels leads to a significantly more complex ground deformation and stress ...Due to space constraints in urban areas,metro tunnels are typically constructed in pairs,with a small clearance.The interaction between twin tunnels leads to a significantly more complex ground deformation and stress distribution than that observed in a single tunnel scenario,particularly if the tunnels are excavated in sequence.A series of physical model tests were conducted to investigate soil deformation and stress disturbances caused by the excavation of twin tunnels.The test results indicate that the interaction between the twin tunnels was observed.Due to the soil arching effect,the excavation of Tunnel 2 increases the soil stress acting on Tunnel 1.An analytical method was proposed to determine soil stress considering the soil arching effect and the interaction between twin tunnels.The method categorized the relative locations between twin tunnels into non-influenced,partially influenced,and fully influenced scenarios.For non-influenced and fully influenced scenarios,the soil stresses above twin tunnels were calculated based on a symmetric major principal stress trace.For the partially influenced scenario,however,the soil arch above Tunnel 2 was asymmetric due to the interaction,and the stress distribution was obtained based on a new asymmetric major principal stress trace.The soil stress on Tunnel 1 was influenced by the load transferred from Tunnel 2 and calculated based on the force equilibrium.A comparison of the analytical and test results indicates that the proposed method effectively predicts the soil stress in the cover layer above twin tunnels excavated sequentially,considering the interaction and soil arching effects.展开更多
The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, ...The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.展开更多
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra...Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.展开更多
The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation...The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation.展开更多
It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the inf...It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones.展开更多
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t...Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.展开更多
Deep storage tunnels(DSTs)are used in densely urbanized areas to relieve stormwater collection systems,thereby reducing urban floods and runoff pollution,due to their substantial storage capacity.The computation of th...Deep storage tunnels(DSTs)are used in densely urbanized areas to relieve stormwater collection systems,thereby reducing urban floods and runoff pollution,due to their substantial storage capacity.The computation of the hydraulic characteristics and flow trajectories of DSTs under rapid filling scenarios can help to predict sediment deposition and pollutant accumulation associated with the stored runoff,as well as the likelihood of operational problems,such as excessive surging.However,such assessments are complicated by various inflow scenarios encountered in tunnel systems during their operation.In this study,the Suzhou River DST in China is selected as a study case.Particles were tracked,and hydraulic analysis was conducted with scaled model experiments and numerical models.The flow field,particle movement,air‒water phase,and pressure patterns in the DST were simulated under various one-and two-sided inflow scenarios.The results showed that with regards to the design conditions involving two-sided inflows,flow reversals occurred with stepwise increases in the water surface and pressure.In contrast,this phenomenon was not observed under the one-sided inflow scenario.Under the asymmetric two-sided inflow scenarios,water inflows led to particle accumulation near the shaft,reducing the received inflows.However,under the symmetric inflow conditions,particles were concentrated near the middle of the tunnel.Compared to those under the symmetric inflow scenario,asymmetric inflow caused surface wave and entrapped air reductions.This study could provide support for regulation of the inflow of the Suzhou River DST and for prediction of sediment and pollutant accumulation.展开更多
The purpose of this study is to deeply explore the impact of physical education(PE)curriculum reform on students’PE test results.By comparing the data of students’PE tests before and after the reform,analyzing the r...The purpose of this study is to deeply explore the impact of physical education(PE)curriculum reform on students’PE test results.By comparing the data of students’PE tests before and after the reform,analyzing the results of the questionnaire survey,and interviewing teachers and students,this paper reveals the significant effect of curriculum reform in improving students’PE test results.It is found that the curriculum reform effectively stimulates students’interest and participation in sports through optimizing teaching content,innovating teaching methods,improving evaluation systems,and increasing extracurricular sports activities,thus improving students’physical fitness and physical test scores.This study provides an empirical basis and suggestions for further promoting PE curriculum reform.展开更多
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ...To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.展开更多
The waste dump of open-pit coal mine is remade of soil-rock mixture under the action of gravity,dynamic load of transportation equipment and earthquake,etc.By using artificial synthetic transparent soil,the developing...The waste dump of open-pit coal mine is remade of soil-rock mixture under the action of gravity,dynamic load of transportation equipment and earthquake,etc.By using artificial synthetic transparent soil,the developing process and migration law for soil-rock mixture are observed in the remade process.The mixture of fused quartz sand,liquid paraffin and n-tridecane is chosen as the material for synthetic transparent soil which is mixed with liquid paraffin and n-tridecane at a mass ratio of4.4at room temperature of17℃.Physical and mechanical properties of transparent soil are determined by physical test and compared with those in natural sandy soil.The results show that transparent soil and sandy soil have high similarity,in other words,transparent soil can be used for similar simulation experiments of soil-rock mixture.展开更多
In this paper, the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory, and then the motion equations of floating system, net system, m...In this paper, the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory, and then the motion equations of floating system, net system, mooring system, and floaters are solved by the Runge-Kutta fifth-order method. For the verification of the numerical model, a series of physical model tests have been carried out. According to the comparisons between the simulated and experimental results, it can be found that the simulated and experimental results agree well in each condition. Then, the effects of submerged depth of grid and direction of incident wave propagation on hydrodynamic behaviors of the net cage are analyzed. According to the simulated results, it can be found that with the increase of submerged depth of grid, the forces acting on mooring lines and bridle lines increase, while the forces on grid lines decrease; the horizontal motion amplitudes of floating collar decrease obviously, while the vertical motion amplitudes of floating collar change little. When the direction of incident wave propagation changes, forces on mooring lines and motion of net cage also change accordingly. When the propagation direction of incident wave changes from 0° to 45°, forces on the main ropes and bridle ropes increase, while the forces on the grid ropes decrease. With the increasing propagation direction of incident wave, the horizontal amplitude of the forces collar decreases, while the vertical amplitude of the floating collar has little variation.展开更多
The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made...The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made,and the pillar recovery was carried out.The instantaneous deformation responses during the pillars recovery and the long-term settlements after the pillar recovery were analyzed.During the pillar recovery,different regions of surrounding rocks suffer from different dynamic disturbances which can be divided into three types,including(I)the combined action of blasting disturbance and unloading disturbance,(II)the sequential action of blasting disturbance and unloading disturbance,and(III)the action of unloading disturbance.After the pillar recovery,the settlement above the first recovering pillar is the largest,which has a traction effect on the settlement in other areas.The settlement process can be divided into two stages,stable displacement stage and unstable displacement stage.When the pillar-room system undergoes the unstable displacement stage,rock spalling and further cascading collapse will occur.展开更多
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi...Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.展开更多
The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of...The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively.展开更多
基金supported by the National Natural Science Foundation of China(No.:52274175)。
文摘Hydraulic fracturing(HF)has achieved significant commercial success in unconventional oil and gas development.However,it has the potential to induce fault slip.This study investigates the physical mechanisms underlying potential fault slip triggered by HF operations under varying geological and operational constraints.First,we elucidate the relationship between the critical stress state and the elastic modulus of the fault,and refine a formula for the maximum crustal stress difference on critically stressed faults,including stress concentration,friction,and dip.Second,we compare the role of injected fluid in permeable faults with that in impermeable faults,and demonstrate that fault slips can be triggered by a combination of friction decrease and pore pressure increase,even after ceasing injection.Specifically,we reveal that friction decline dominates induced fault slip on high permeable and hydraulically connected fault.Third,based on experimental results and theoretical analysis,we quantify the influence region of stress transfer under different conditions of well location and injection pressure.The results reveal that the elastic modulus of the fault controls the stress concentration on the fault plane.The dip of the fault and the stress concentration jointly determine the maximum crustal stress difference required for failure in critically stressed reverse faults.Thus,our study is more accurate in estimating the proximity of the in-situ stress to the critical state,compared with traditional methods.For critical reverse faults,the risk of induced slip is positively correlated with both injection pressure and friction of fault plane.When the injection pressure(PI)is 100 MPa and the friction(μ)is 0.8,the safe distance from injection point to critically stressed faults along the direction of maximum principal stress and maximum principal stress(dH and dv)should exceed 25 and 18 times as the hydraulic fracture halflength.When PI is 100 MPa andμis 0.6,dH and dv are 23 and 17 times as the hydraulic fracture halflength,respectively.When PI is 60 MPa andμis 0.6,dH and dv are 18 and 13 times as the hydraulic fracture half-length,respectively.The works enhance our understanding of HF-induced fault slip and potentially guide designs of the shale gas well location and trajectory for safer production.
基金supported by the Major Program of the National Natural Science Foundation of China(No.42090054)the National Key Scientific Instrument and Equipment Development Projects of China(No.41827808)+1 种基金the Major Program of the National Natural Science Foundation of China(No.42090055)the National Science Foundation of China(No.42107194)。
文摘In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a model material suitable for analysing the deformation and failure of reservoir landslides,based on the existing research foundation of analogous materials,5 materials and 5 physical-mechanical parameters were selected to design an orthogonal test.The factor sensitivity of each component ratio and its influence on the physical-mechanical indices were studied by range analysis and stepwise regression analysis,and the proportioning method was determined.Finally,the model material was developed,and a model test was carried out considering Huangtupo as the prototype application.The results showed that(1)the model material composed of sand,barite powder,glass beads,clay,and bentonite had a wide distribution of physical-mechanical parameters,which could be applied to model tests under different conditions;(2)the physical-mechanical parameters of analogous materials matched the application prototype;and(3)the mechanical properties and seepage performance of the model material sample met the requirements of reservoir landslide model tests,which could be used to simulate landslide evolution and analyse the deformation process.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project No.HKU 17207518).
文摘This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307241 and 42107211)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2022Z008).
文摘Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that exhibit the high brittleness and strength characteristics of deep hard rock to construct physical models representing different types of structural planes,including composite,exposed,non-exposed,and throughgoing structural planes.Physical simulation experiments were conducted on structuretype rockbursts in deep horseshoe-shaped tunnels,focusing on strain differentiation characteristics,critical triggering conditions,critical crack opening displacement,the incubation process,the reduction effects of structural planes on failure intensity,and formation mechanisms.These experiments were complemented by acoustic and optical monitoring,as well as discrete element numerical simulations,to provide a comprehensive analysis.The results revealed that the most significant strain heterogeneity in the surrounding rock occurs at the tip of the structural plane along the tunnel's minimum principal stress direction,driven by the combined effects of tensile and shear forces.We quantitatively determined the critical stress and strain conditions for structure-type rockbursts and evaluated the intensity of rockbursts induced by different structural planes using critical crack opening displacement(COD)values,the uniformity coefficient,and the curvature coefficient.Analysis of acoustic emission events,including frequency,amplitude,and b-value,indicated that the macro-fracture process is governed by both the principal stress differential and the characteristics of the structural plane.Furthermore,using the bearing capacity reduction coefficient,we found that exposed structural planes have the most significant weakening effect on rock mass strength,followed by non-exposed and throughgoing structural planes.The analysis of average frequency(AF)and rise angle(RA)parameters revealed a close correlation between the failure modes of structure-type rockbursts,the rock mass structure,and the stress levels.These findings provide critical theoretical support for the prediction and prevention of structure-type rockburst disasters.
基金funding support from the National Natural Science Foundation of China(Grant Nos.42177136 and 52309126).
文摘The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in southwestern China as the engineering prototype,large-scale three-dimensional(3D)physical model tests were conducted on a 3D-printed complex geological model containing two faults.Based on the selfdeveloped 3D loading system and excavation device,the macroscopic failure of fault-slip rockbursts was simulated indoors.The stress,strain,and fracturing characteristics of the surrounding rock near the two faults were systematically evaluated during excavation and multistage loading.The test results effectively revealed the evolution and triggering mechanism of fault-slip rockbursts.After the excavation of a highstress tunnel,stress readjustment occurred.Owing to the presence of these two faults,stress continued to accumulate in the rock mass between them,leading to the accumulation of fractures.When the shear stress on a fault surface exceeded its shear strength,sudden fault slip and dislocation occurred,thus triggering rockbursts.Rockbursts occurred twice in the vault between the two faults,showing obvious intermittent characteristics.The rockburst pit was controlled by two faults.When the faults remained stable,tensile failure predominated in the surrounding rock.However,when the fault slip was triggered,shear failure in the surrounding rock increased.These findings provide valuable insights for enhancing the comprehension of fault-slip rockbursts.
基金supported by the National Natural Science Foundation of China(No.U23A2045)the China Three Gorges Corporation(YM(BHT)/(22)022).
文摘Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this issue,we selected the Wangjiashan(WJS)landslide in the Baihetan Reservoir area as a case study to evaluate LGIW hazards and develop corresponding mitigation strategies.Using 2D physical model tests and 3D numerical simulations,we established a 3D hazard assessment method for LGIWs based on 2D experimental results.This method confirmed the effectiveness of slope-cutting engineering in mitigating LGIW hazards.Based on this assessment framework,we proposed a novel approach for LGIW risk reduction.The results showed that the maximum wave amplitude reached 19.64 m in the Jinsha River channel,and the maximum run-up was 11.5 m in the XiangBiLing(XBL)community,indicating a substantial LGIW threat to the area.By reducing the rear edge of the sliding mass to 920 m above sea level(asl),the LGIW risk to the XBL community could be lowered to a tolerable level.Compared with traditional landslide prevention and control measures,the proposed mitigation scheme can reduce excavation costs by approximately 37 million CNY,making it a more scientifically sound and economically feasible solution.We explored the concept and the implementation of LGIW risk mitigation in depth,offering new insights for global LGIW risk management.This case study enhances our understanding of LGIW hazard prevention and provides valuable guidance for policymaking and engineering practices in similar geological settings worldwide.
基金supported by the National Natural Science Foundation of China(Grant No.52308463)the Shanghai Rising-Star Program(Grant No.23YF1449100)the Fundamental Research Funds for the Central Universities(Grant No.2023-2-ZD08).
文摘Due to space constraints in urban areas,metro tunnels are typically constructed in pairs,with a small clearance.The interaction between twin tunnels leads to a significantly more complex ground deformation and stress distribution than that observed in a single tunnel scenario,particularly if the tunnels are excavated in sequence.A series of physical model tests were conducted to investigate soil deformation and stress disturbances caused by the excavation of twin tunnels.The test results indicate that the interaction between the twin tunnels was observed.Due to the soil arching effect,the excavation of Tunnel 2 increases the soil stress acting on Tunnel 1.An analytical method was proposed to determine soil stress considering the soil arching effect and the interaction between twin tunnels.The method categorized the relative locations between twin tunnels into non-influenced,partially influenced,and fully influenced scenarios.For non-influenced and fully influenced scenarios,the soil stresses above twin tunnels were calculated based on a symmetric major principal stress trace.For the partially influenced scenario,however,the soil arch above Tunnel 2 was asymmetric due to the interaction,and the stress distribution was obtained based on a new asymmetric major principal stress trace.The soil stress on Tunnel 1 was influenced by the load transferred from Tunnel 2 and calculated based on the force equilibrium.A comparison of the analytical and test results indicates that the proposed method effectively predicts the soil stress in the cover layer above twin tunnels excavated sequentially,considering the interaction and soil arching effects.
基金Projects(51278209,51478047)supported by the National Natural Science Foundation of ChinaProject(2014FJ-NCET-ZR03)supported by the Program for New Century Excellent Talents in Fujian Provincial Universities,China+1 种基金Project(JA13005)supported by the Incubation Program for Excellent Young Science and Technology Talents in Fujian Provincial Universities,ChinaProject(ZQN-PY110)supported by the Young and Middle-aged Academic Staff of Huaqiao University,China
文摘The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.
基金funded by the National Key R&D Program of China (Grant No. 2021YFB3901402)the Fundamental Research Funds for the Central Universities (Project No. 2022CDJKYJH037)。
文摘Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.
基金supported by National Natural Science Foundation of China (Grant NOs. 41877250, 41272284)the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Natural Resources (No. EFGD20240601)the Natural Science Foundation of Shaanxi Province-General Project (grant number 2023-JC-YB-231)-Suitability Evaluation of Precast Prestressed Underground Comprehensive Pipe Gallery Crossing Active Ground Fissure。
文摘The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation.
基金funded by the National Natural Science Foundation of China(Grant No.42377154).
文摘It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones.
基金support from the National Natural Science Foundation of China (Grant No.42207199)Zhejiang Provincial Postdoctoral Science Foundation (Grant Nos.ZJ2022155 and ZJ2022156).
文摘Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.
基金supported by the National Natural Science Foundation of Jiangsu Province(Grant No.BK20230099)the National Natural Science Foundation of China(Grants No.52379061 and 52179062)the Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(Grant No.QTKS0034W23292).
文摘Deep storage tunnels(DSTs)are used in densely urbanized areas to relieve stormwater collection systems,thereby reducing urban floods and runoff pollution,due to their substantial storage capacity.The computation of the hydraulic characteristics and flow trajectories of DSTs under rapid filling scenarios can help to predict sediment deposition and pollutant accumulation associated with the stored runoff,as well as the likelihood of operational problems,such as excessive surging.However,such assessments are complicated by various inflow scenarios encountered in tunnel systems during their operation.In this study,the Suzhou River DST in China is selected as a study case.Particles were tracked,and hydraulic analysis was conducted with scaled model experiments and numerical models.The flow field,particle movement,air‒water phase,and pressure patterns in the DST were simulated under various one-and two-sided inflow scenarios.The results showed that with regards to the design conditions involving two-sided inflows,flow reversals occurred with stepwise increases in the water surface and pressure.In contrast,this phenomenon was not observed under the one-sided inflow scenario.Under the asymmetric two-sided inflow scenarios,water inflows led to particle accumulation near the shaft,reducing the received inflows.However,under the symmetric inflow conditions,particles were concentrated near the middle of the tunnel.Compared to those under the symmetric inflow scenario,asymmetric inflow caused surface wave and entrapped air reductions.This study could provide support for regulation of the inflow of the Suzhou River DST and for prediction of sediment and pollutant accumulation.
基金2021 Guangdong Province Undergraduate College Teaching Quality and Teaching Reform Project Construction Project“Research on Strengthening and Perfecting the Evaluation System of Physical Education Courses in Ordinary Colleges and Universities under the Background of Education Evaluation Reform in the New Era-Taking Guangdong University of Foreign Studies as an Example”(Higher Education Teaching Reform and Construction Project No.203)。
文摘The purpose of this study is to deeply explore the impact of physical education(PE)curriculum reform on students’PE test results.By comparing the data of students’PE tests before and after the reform,analyzing the results of the questionnaire survey,and interviewing teachers and students,this paper reveals the significant effect of curriculum reform in improving students’PE test results.It is found that the curriculum reform effectively stimulates students’interest and participation in sports through optimizing teaching content,innovating teaching methods,improving evaluation systems,and increasing extracurricular sports activities,thus improving students’physical fitness and physical test scores.This study provides an empirical basis and suggestions for further promoting PE curriculum reform.
基金supported by the National Key Research and Development Plan of China(No.2016YFC0600901)the National Natural Science Foundation of China(No.51874311)the Natural Science Foundation of China(No.51904306)。
文摘To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.
基金Project(2015QNA40)supported by the Fundamental Research Funds for the Central Universities,China
文摘The waste dump of open-pit coal mine is remade of soil-rock mixture under the action of gravity,dynamic load of transportation equipment and earthquake,etc.By using artificial synthetic transparent soil,the developing process and migration law for soil-rock mixture are observed in the remade process.The mixture of fused quartz sand,liquid paraffin and n-tridecane is chosen as the material for synthetic transparent soil which is mixed with liquid paraffin and n-tridecane at a mass ratio of4.4at room temperature of17℃.Physical and mechanical properties of transparent soil are determined by physical test and compared with those in natural sandy soil.The results show that transparent soil and sandy soil have high similarity,in other words,transparent soil can be used for similar simulation experiments of soil-rock mixture.
基金supported by the National Natural Science Foundation of China(Grant No.50809014)the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA100301)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.200801411094)
文摘In this paper, the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory, and then the motion equations of floating system, net system, mooring system, and floaters are solved by the Runge-Kutta fifth-order method. For the verification of the numerical model, a series of physical model tests have been carried out. According to the comparisons between the simulated and experimental results, it can be found that the simulated and experimental results agree well in each condition. Then, the effects of submerged depth of grid and direction of incident wave propagation on hydrodynamic behaviors of the net cage are analyzed. According to the simulated results, it can be found that with the increase of submerged depth of grid, the forces acting on mooring lines and bridle lines increase, while the forces on grid lines decrease; the horizontal motion amplitudes of floating collar decrease obviously, while the vertical motion amplitudes of floating collar change little. When the direction of incident wave propagation changes, forces on mooring lines and motion of net cage also change accordingly. When the propagation direction of incident wave changes from 0° to 45°, forces on the main ropes and bridle ropes increase, while the forces on the grid ropes decrease. With the increasing propagation direction of incident wave, the horizontal amplitude of the forces collar decreases, while the vertical amplitude of the floating collar has little variation.
基金Projects(11972378,41630642)supported by the National Natural Science Foundation of China。
文摘The goaf may face a series of deformation and settlement problems when the room-pillar mining method is used to excavate ore and pillars in the deep strata.To this end,a deep room-pillar model with two levels was made,and the pillar recovery was carried out.The instantaneous deformation responses during the pillars recovery and the long-term settlements after the pillar recovery were analyzed.During the pillar recovery,different regions of surrounding rocks suffer from different dynamic disturbances which can be divided into three types,including(I)the combined action of blasting disturbance and unloading disturbance,(II)the sequential action of blasting disturbance and unloading disturbance,and(III)the action of unloading disturbance.After the pillar recovery,the settlement above the first recovering pillar is the largest,which has a traction effect on the settlement in other areas.The settlement process can be divided into two stages,stable displacement stage and unstable displacement stage.When the pillar-room system undergoes the unstable displacement stage,rock spalling and further cascading collapse will occur.
基金financially supported by the Young Scientist Project of the National Key Research and Development Program of China (No.2021YFC2900600)the Beijing Nova Program (No.20220484057)financial support from China Scholarship Council under Grant CSC No.202110300001。
文摘Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.
基金This work was supported by the Fundamental Research Funds for the Central Universities,the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_0487)the National Natural Science Foundation of China(Grant Nos.41831278,and 51579081).
文摘The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively.