Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different phys...Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...展开更多
The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previou...The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previous surveys,we found N.nomurai could not be observed in the south of 30°N.In this paper,we analyzed the mechanism of this phenomenon.After exploring the possible impacts of different environmental factors,we found that physical processes are essential to the distribution pattern of N.nomurai rather than biological or chemical factors in the East China Sea.The combination of the location of the initial breeding places of N.nomurai and the current system determine the distribution pattern.This study could provide important insights to the potential control of the giant jellyfish in the Chinese coastal waters.展开更多
The physical processes associated with the clear-sky greenhouse effect in the presence of water vapor are examined by including surface emissivity in the greenhouse effect formulation, and by introducing a new way to ...The physical processes associated with the clear-sky greenhouse effect in the presence of water vapor are examined by including surface emissivity in the greenhouse effect formulation, and by introducing a new way to partition physical processes of the greenhouse effect. In this new framework, it is found that the clear-sky greenhouse effect is governed by three physical processes associated with (1) the temperature contrast between the surface and the atmosphere, (2) the interaction between the surface emissivity and the temperature contrast, and (3) the surface emissivity. The importance of the three physical processes is assessed by computing their vertical and spectral variations far the subarctic winter and summer standard atmosphere using the radiation model MODTRAN3 (Moderate Resolution Transmittance code Version 3). The results show that the process associated with the temperature contrast between the surface and the atmosphere dominates over the other two processes in magnitude. The magnitude of this process has substantial variations in the spectral region of 1250 to 1880 cm-1 and in the far infrared region. Due to the low-level temperature inversion over the subarctic winter, there exists a negative contribution to the greenhouse trapping. The seasonal variations are, however, dominated by the processes associated with the interaction between the surface emissivity and the temperature contrast as well as the surface emissivity itself. The magnitudes of these two physical processes contributing to the greenhouse trapping over the subarctic winter are about 7 to 10 times of those over the subarctic summer, whereas the magnitude of the processes associated with the temperature contrast in the subarctic summer is only about 2 times of that in the subarctic winter.展开更多
Based on the detection of the dynamic and thermodynamic functions of the physical processes in IAP3.0, the equilibrium mechanisms of the temperature, moisture and wind axe analyzed. The negative feedback between the l...Based on the detection of the dynamic and thermodynamic functions of the physical processes in IAP3.0, the equilibrium mechanisms of the temperature, moisture and wind axe analyzed. The negative feedback between the longwave radiation and temperature is verified. The cooling regulation of net radiation on temperature is mostly balanced by the heating of precipitation; the leading actions on temperature of other processes such as vertical diffusion, shallow cumulus convection and friction are merely available for lower air. The moisture consumption of precipitation is compensated on the whole by the provision of shallow cumulus convection, which sustains the moisture conservation to a high degree. The wind field is directly regulated by the momentum redistribution of cumulus, the dry adiabatic convection and vertical diffusion. Yet, the prominent influences of these processes are generally confined to the lower level. The east wind at low latitudes and the west wind at high latitudes are both weakened by the regulations and furthermore, by virtue of the transportation of mean meridional circulation, such a variation exactly maintains the angular momentum conservation.展开更多
In 1950, I graduated from Tsinghua University,majoring in machine building. Three years later, Ientered the Iron & Steel College in Moscow to start studying metallurgy as a postgraduate. After obtaining my associa...In 1950, I graduated from Tsinghua University,majoring in machine building. Three years later, Ientered the Iron & Steel College in Moscow to start studying metallurgy as a postgraduate. After obtaining my associate professorship, I came back home. I devoted the succeeding 40 years to the theory and technology of solidification, because I had realized the importance of the physical process of solidification in materials science and engineering technologies as a means of upgrading the properties of traditional materials and developing new materials. My contributions in this field might be listed as follows:展开更多
In this paper, the microphysical relationships of 8 dense fog events collected from a comprehensive fog observation campaign carried out at Pancheng(32.2 N, 118.7 E) in the Nanjing area, China in the winter of 2007 ...In this paper, the microphysical relationships of 8 dense fog events collected from a comprehensive fog observation campaign carried out at Pancheng(32.2 N, 118.7 E) in the Nanjing area, China in the winter of 2007 are investigated. Positive correlations are found among key microphysical properties(cloud droplet number concentration, droplet size, spectral standard deviation, and liquid water content) in each case, suggesting that the dominant processes in these fog events are likely droplet nucleation with subsequent condensational growth and/or droplet deactivation via complete evaporation of some droplets. The abrupt broadening of the fog droplet spectra indicates the occurrence of the collision-coalescence processes as well, although not dominating. The combined efects of the dominant processes and collision-coalescence on microphysical relationships are further analyzed by dividing the dataset according to visibility or autoconversion threshold in each case. The result shows that the specific relationships of number concentration to volume-mean radius and spectral standard deviation depend on the competition between the compensation of small droplets due to nucleation-condensation and the loss of small droplets due to collision-coalescence. Generally, positive correlations are found for diferent visibility or autoconversion threshold ranges in most cases, although negative correlations sometimes appear with lower visibility or larger autoconversion threshold. Therefore, the compensation of small droplets is generally stronger than the loss, which is likely related to the sufcient fog condensation nuclei in this polluted area.展开更多
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical...Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.展开更多
Xishuangbanna of Yunnan Province is a famous tropical foggy region. A field experiment was carried out from November 23 to 30 of 1997 during which fogs occurred regularly every day. In the paper the characteristics of...Xishuangbanna of Yunnan Province is a famous tropical foggy region. A field experiment was carried out from November 23 to 30 of 1997 during which fogs occurred regularly every day. In the paper the characteristics of macrostructure of fog are analyzed and the physical processes of formation and dissipation of fog are studied. The results show that the Xishuangbanna valley fog forms firstly in the lower atmosphere with two-layer structures and then develops suddenly in the vertical direction after reaching the ground. Furthermore, the vegetation effect on the formation and dissipation of fog is discussed specially.展开更多
The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that ...The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that there are obvious differences among simulations of summer precipitation over China from different individual ensemble members.The simulated precipitation over China is sensitive to different cumulus convection,radiative transfer,and land surface process parameterizations.These differences lead to large uncertainties in the simulation results.The standard deviation of the simulated summer precipitation departure percentage over West China is larger than that over East China,signifying that the simulated precipitation over East China has higher reliability and consistency than that over West China.The Talagr and diagram shows that the ensemble system has reasonable dispersion in the simulated summer mean precipitation over East China.The summer ensemble mean precipitation over East China evaluated by various indices is better than most single simulations.The physical process ensemble technique reduces the uncertainties of the model physics in precipitation and improves the simulation results as a whole.Further, adopting the optimized ensemble mean method can obviously improve the performance of the pσ-RCM9 model in simulation of summer precipitation over East China.展开更多
Physical geography and human geography are the principal branches of the geographical sciences. Physical process simulation and human process simulation in geography are both quantitative methods used to recover past ...Physical geography and human geography are the principal branches of the geographical sciences. Physical process simulation and human process simulation in geography are both quantitative methods used to recover past events and even to forecast events based on precisely determined parameters. There are four differences between physical process simulation and human process simulation in geography, which we summarize with two specific cases, one of which is about a typhoon's development and its precipitation, and the other of which is regarding the evolution of three industrial structures in China. The differences focus on four aspects: the main factors of the research framework; the knowledge back-ground of the systematic analysis framework; the simulation data sources and quantitative method; and the core of the study object and the method of forecast application. As the human-land relationship is the key ideology of the man-land system, the relationship between the physical and human factors is becoming increasingly close at present. Physical process simulation and human process simulation in geography will exhibit crossing and blending in the future to reflect the various geographical phenomena better.展开更多
The effects of different convective parameterization,explicit moisture schemes and surface heat- ing on the meso-β scale structure of a squall line system are investigated,by using an improved mesoscale model.It is f...The effects of different convective parameterization,explicit moisture schemes and surface heat- ing on the meso-β scale structure of a squall line system are investigated,by using an improved mesoscale model.It is found that the successful prediction of mesoscale convective systems hinges up- on not only the sub-grid scale convection,but also the resolvable scale phase change processes and the diurnal variation in the boundary layer.The simultaneous operation of the Fritsch-Chappell convective scheme with parameterized moist downdrafts and the prognostic equations for cloud water (ice) and rainwater (snow) seems to be essential in simulating realistically MCSs and reducing or eliminating the unrealistic development of the CISK-like instability associated with the squall line system.展开更多
In this work, we used a linear CCD to detect the whole physical developing process of silver diffusion transfer reversal process in photographic chemistry. The influence of the ingredient of the working solution was s...In this work, we used a linear CCD to detect the whole physical developing process of silver diffusion transfer reversal process in photographic chemistry. The influence of the ingredient of the working solution was studied.展开更多
A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of ...A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.展开更多
1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions...1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical,chemical and biological processes and their interactions,and on the response of arid regions to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of desert,oasis,loess,and aeolian landforms,etc.;and support integrated studies on mountain-desert-oasis system in arid watershed with water resources as masterstroke,so as to provide reliable technological support for water safety,ecology safety and food safety in arid regions.展开更多
1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions...1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical.展开更多
1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions...1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.展开更多
In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ...In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ (t) , is designed. Using this index and choosing the internationally accepted ground resistivity data before the Tangshan M =7.8 earthquake of July 28, 1976, the features of dynamic evolution pattern of R ρ(t) are studied. The results show that: ① about 10~9 months before earthquake, the ground resistivity in a certain range around the epicentral region begins to display the anomaly of accelerating descent, and the rate of descent is higher in the epicentral region than in surrounding areas; ② with the shortening of countdown before earthquake, the R ρ(t) value in epicentral region increases gradually (ground resistivity value decreases at an increasing rate); ③ the R ρ(t) value has the epicentral area as a center and its contour lines propagate towards surrounding areas with the shortening of countdown before earthquake; ④after the R ρ(t) value in epicentral region has descended at increasing rate to reach an extremity [ R ρ(t) = (7.0], it turns to descend at decreasing rate (2~3 months) and earthquake occurs when it accelerates again. Meanwhile, earthquake occurs when the contour lines of R ρ(t) stop propagating towards surrounding areas and turn to shrink back (2~3 months later). Its physical process can be explained by the″ swollen hypothesis″ of Prof. Fu and the theory of ″Slip-weakening and rockmass instability″ of Mei, Niu, et al ..展开更多
1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-...1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-5].Understanding the rock stress state at great depths is not only an indispensable foundation for solving scientific problems associated with geology,geophysics,and geodynamics-such as plate-driving mechanisms,the earth’s energy equilibrium,earth-quake mechanisms,and tectonic activities-but also a necessary prerequisite for the evaluation,exploitation,and disposal of deep energy and resources,such as coal and metal minerals.Due to the complexity and uncertainty of the origin of in situ rock stress,it is a difficult quantity to evaluate,in comparison with other rock properties.Currently,reliable information on the stress state in a region can only be determined through field stress measurement.Therefore,a variety of stress measurement techniques have been developed and applied worldwide to provide information on crus-tal contemporary stress at specific depth ranges[6].展开更多
The article is devoted to the application of new radial sports games basketball in physical education of preschool children. The benefits of a new game: expanding the playing space attributable to each player, limiti...The article is devoted to the application of new radial sports games basketball in physical education of preschool children. The benefits of a new game: expanding the playing space attributable to each player, limiting the opposition defenders and facilitates the use of gaming devices. The use of innovative methods in physical training of preschool children gives you the opportunity to solve successfully the whole complex of educational issues and the full development of the child.展开更多
基金National Natural Science Foundation of China (No. 40275004)State Key Laboratory of Atmosphere Physics and Chemistry
文摘Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA19060204,XDA23050502)the State Key Program of National Natural Science of China(No.42130411)+4 种基金the Key Deployment Project of Centre for Ocean Mega-Research of ScienceChinese Academy of Sciences(CAS)(No.COMS2019J03)the International Science Partnership Program of the Chinese Academy of Sciences(Nos.121311KYSB20190029,133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)。
文摘The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previous surveys,we found N.nomurai could not be observed in the south of 30°N.In this paper,we analyzed the mechanism of this phenomenon.After exploring the possible impacts of different environmental factors,we found that physical processes are essential to the distribution pattern of N.nomurai rather than biological or chemical factors in the East China Sea.The combination of the location of the initial breeding places of N.nomurai and the current system determine the distribution pattern.This study could provide important insights to the potential control of the giant jellyfish in the Chinese coastal waters.
文摘The physical processes associated with the clear-sky greenhouse effect in the presence of water vapor are examined by including surface emissivity in the greenhouse effect formulation, and by introducing a new way to partition physical processes of the greenhouse effect. In this new framework, it is found that the clear-sky greenhouse effect is governed by three physical processes associated with (1) the temperature contrast between the surface and the atmosphere, (2) the interaction between the surface emissivity and the temperature contrast, and (3) the surface emissivity. The importance of the three physical processes is assessed by computing their vertical and spectral variations far the subarctic winter and summer standard atmosphere using the radiation model MODTRAN3 (Moderate Resolution Transmittance code Version 3). The results show that the process associated with the temperature contrast between the surface and the atmosphere dominates over the other two processes in magnitude. The magnitude of this process has substantial variations in the spectral region of 1250 to 1880 cm-1 and in the far infrared region. Due to the low-level temperature inversion over the subarctic winter, there exists a negative contribution to the greenhouse trapping. The seasonal variations are, however, dominated by the processes associated with the interaction between the surface emissivity and the temperature contrast as well as the surface emissivity itself. The magnitudes of these two physical processes contributing to the greenhouse trapping over the subarctic winter are about 7 to 10 times of those over the subarctic summer, whereas the magnitude of the processes associated with the temperature contrast in the subarctic summer is only about 2 times of that in the subarctic winter.
基金This study was supported by the National Natural Science Foundation of China under Grant No.40233027.
文摘Based on the detection of the dynamic and thermodynamic functions of the physical processes in IAP3.0, the equilibrium mechanisms of the temperature, moisture and wind axe analyzed. The negative feedback between the longwave radiation and temperature is verified. The cooling regulation of net radiation on temperature is mostly balanced by the heating of precipitation; the leading actions on temperature of other processes such as vertical diffusion, shallow cumulus convection and friction are merely available for lower air. The moisture consumption of precipitation is compensated on the whole by the provision of shallow cumulus convection, which sustains the moisture conservation to a high degree. The wind field is directly regulated by the momentum redistribution of cumulus, the dry adiabatic convection and vertical diffusion. Yet, the prominent influences of these processes are generally confined to the lower level. The east wind at low latitudes and the west wind at high latitudes are both weakened by the regulations and furthermore, by virtue of the transportation of mean meridional circulation, such a variation exactly maintains the angular momentum conservation.
文摘In 1950, I graduated from Tsinghua University,majoring in machine building. Three years later, Ientered the Iron & Steel College in Moscow to start studying metallurgy as a postgraduate. After obtaining my associate professorship, I came back home. I devoted the succeeding 40 years to the theory and technology of solidification, because I had realized the importance of the physical process of solidification in materials science and engineering technologies as a means of upgrading the properties of traditional materials and developing new materials. My contributions in this field might be listed as follows:
基金Supported by National Natural Science Foundation of China (41305120,41030962,41275151,41375138,41375137,and 41305034)Natural Science Foundation of Jiangsu Province (BK20130988,SK201220841)+8 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20133228120002)China Meteorological Administration Special Public Welfare Research Fund (GYHY201406007)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (13KJB170014)Open Funding from Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration (KDW1201,KDW1102)Open Funding from Key Laboratory of Meteorological Disaster of Ministry of Education (KLME1205,KLME1107)Open Funding from State Key Laboratory of Severe Weather (2013LASW-B06)Qing-Lan Project for Cloud-Fog-Precipitation-Aerosol Study in Jiangsu ProvinceProject Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsU.S. Department of Energy’s (DOE) Earth System Modeling (ESM) program via the FASTER project (www.bnl.gov/faster) and Atmospheric System Research (ASR) program
文摘In this paper, the microphysical relationships of 8 dense fog events collected from a comprehensive fog observation campaign carried out at Pancheng(32.2 N, 118.7 E) in the Nanjing area, China in the winter of 2007 are investigated. Positive correlations are found among key microphysical properties(cloud droplet number concentration, droplet size, spectral standard deviation, and liquid water content) in each case, suggesting that the dominant processes in these fog events are likely droplet nucleation with subsequent condensational growth and/or droplet deactivation via complete evaporation of some droplets. The abrupt broadening of the fog droplet spectra indicates the occurrence of the collision-coalescence processes as well, although not dominating. The combined efects of the dominant processes and collision-coalescence on microphysical relationships are further analyzed by dividing the dataset according to visibility or autoconversion threshold in each case. The result shows that the specific relationships of number concentration to volume-mean radius and spectral standard deviation depend on the competition between the compensation of small droplets due to nucleation-condensation and the loss of small droplets due to collision-coalescence. Generally, positive correlations are found for diferent visibility or autoconversion threshold ranges in most cases, although negative correlations sometimes appear with lower visibility or larger autoconversion threshold. Therefore, the compensation of small droplets is generally stronger than the loss, which is likely related to the sufcient fog condensation nuclei in this polluted area.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 40275004 and 49575251.
文摘Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.
基金The paper was supported financially by the National Natural Science Foundation of China 49665012.
文摘Xishuangbanna of Yunnan Province is a famous tropical foggy region. A field experiment was carried out from November 23 to 30 of 1997 during which fogs occurred regularly every day. In the paper the characteristics of macrostructure of fog are analyzed and the physical processes of formation and dissipation of fog are studied. The results show that the Xishuangbanna valley fog forms firstly in the lower atmosphere with two-layer structures and then develops suddenly in the vertical direction after reaching the ground. Furthermore, the vegetation effect on the formation and dissipation of fog is discussed specially.
基金the National Natural Science Foundation of China under Grant No.40805041Chinese COPES Project under Grant No.GYHY200706005
文摘The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that there are obvious differences among simulations of summer precipitation over China from different individual ensemble members.The simulated precipitation over China is sensitive to different cumulus convection,radiative transfer,and land surface process parameterizations.These differences lead to large uncertainties in the simulation results.The standard deviation of the simulated summer precipitation departure percentage over West China is larger than that over East China,signifying that the simulated precipitation over East China has higher reliability and consistency than that over West China.The Talagr and diagram shows that the ensemble system has reasonable dispersion in the simulated summer mean precipitation over East China.The summer ensemble mean precipitation over East China evaluated by various indices is better than most single simulations.The physical process ensemble technique reduces the uncertainties of the model physics in precipitation and improves the simulation results as a whole.Further, adopting the optimized ensemble mean method can obviously improve the performance of the pσ-RCM9 model in simulation of summer precipitation over East China.
基金National Natural Science Foundation of China, No.41125005 Knowledge Innovation Program of the Chinese Academy of Sciences, No.KACX1-YW-1001
文摘Physical geography and human geography are the principal branches of the geographical sciences. Physical process simulation and human process simulation in geography are both quantitative methods used to recover past events and even to forecast events based on precisely determined parameters. There are four differences between physical process simulation and human process simulation in geography, which we summarize with two specific cases, one of which is about a typhoon's development and its precipitation, and the other of which is regarding the evolution of three industrial structures in China. The differences focus on four aspects: the main factors of the research framework; the knowledge back-ground of the systematic analysis framework; the simulation data sources and quantitative method; and the core of the study object and the method of forecast application. As the human-land relationship is the key ideology of the man-land system, the relationship between the physical and human factors is becoming increasingly close at present. Physical process simulation and human process simulation in geography will exhibit crossing and blending in the future to reflect the various geographical phenomena better.
文摘The effects of different convective parameterization,explicit moisture schemes and surface heat- ing on the meso-β scale structure of a squall line system are investigated,by using an improved mesoscale model.It is found that the successful prediction of mesoscale convective systems hinges up- on not only the sub-grid scale convection,but also the resolvable scale phase change processes and the diurnal variation in the boundary layer.The simultaneous operation of the Fritsch-Chappell convective scheme with parameterized moist downdrafts and the prognostic equations for cloud water (ice) and rainwater (snow) seems to be essential in simulating realistically MCSs and reducing or eliminating the unrealistic development of the CISK-like instability associated with the squall line system.
文摘In this work, we used a linear CCD to detect the whole physical developing process of silver diffusion transfer reversal process in photographic chemistry. The influence of the ingredient of the working solution was studied.
文摘A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.
文摘1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical,chemical and biological processes and their interactions,and on the response of arid regions to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of desert,oasis,loess,and aeolian landforms,etc.;and support integrated studies on mountain-desert-oasis system in arid watershed with water resources as masterstroke,so as to provide reliable technological support for water safety,ecology safety and food safety in arid regions.
文摘1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.Research in arid regions emphasize particularly on the arid-region-characterized physical.
文摘1.Aims and scope The international journal Research in Cold and Arid Regions,is devoted to publishing the latest research achievements in processes and the patterns of the Earth surface system in cold and arid regions.Research in cold regions emphasize particularly on the cold-region-characterized physical,chemical and biological processes and their interactions,and on the response of cryosphere to global change and human activities as well as their effects on environment and the acclimatizable strategies;focus on the objects of glacier,snow,river,lake,sea ice,permafrost and seasonal frozen ground,and periglacial geomorphology,etc.;and think much of cold regions engineering and technology.
文摘In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ (t) , is designed. Using this index and choosing the internationally accepted ground resistivity data before the Tangshan M =7.8 earthquake of July 28, 1976, the features of dynamic evolution pattern of R ρ(t) are studied. The results show that: ① about 10~9 months before earthquake, the ground resistivity in a certain range around the epicentral region begins to display the anomaly of accelerating descent, and the rate of descent is higher in the epicentral region than in surrounding areas; ② with the shortening of countdown before earthquake, the R ρ(t) value in epicentral region increases gradually (ground resistivity value decreases at an increasing rate); ③ the R ρ(t) value has the epicentral area as a center and its contour lines propagate towards surrounding areas with the shortening of countdown before earthquake; ④after the R ρ(t) value in epicentral region has descended at increasing rate to reach an extremity [ R ρ(t) = (7.0], it turns to descend at decreasing rate (2~3 months) and earthquake occurs when it accelerates again. Meanwhile, earthquake occurs when the contour lines of R ρ(t) stop propagating towards surrounding areas and turn to shrink back (2~3 months later). Its physical process can be explained by the″ swollen hypothesis″ of Prof. Fu and the theory of ″Slip-weakening and rockmass instability″ of Mei, Niu, et al ..
基金financially supported by the National Key Research and Development Program of China(2022YFC3004601)the National Natural Science Foundation of China(52204084)the Science,Technology and Innovation Project of Xiongan New Area(2023XAGG0061).
文摘1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-5].Understanding the rock stress state at great depths is not only an indispensable foundation for solving scientific problems associated with geology,geophysics,and geodynamics-such as plate-driving mechanisms,the earth’s energy equilibrium,earth-quake mechanisms,and tectonic activities-but also a necessary prerequisite for the evaluation,exploitation,and disposal of deep energy and resources,such as coal and metal minerals.Due to the complexity and uncertainty of the origin of in situ rock stress,it is a difficult quantity to evaluate,in comparison with other rock properties.Currently,reliable information on the stress state in a region can only be determined through field stress measurement.Therefore,a variety of stress measurement techniques have been developed and applied worldwide to provide information on crus-tal contemporary stress at specific depth ranges[6].
文摘The article is devoted to the application of new radial sports games basketball in physical education of preschool children. The benefits of a new game: expanding the playing space attributable to each player, limiting the opposition defenders and facilitates the use of gaming devices. The use of innovative methods in physical training of preschool children gives you the opportunity to solve successfully the whole complex of educational issues and the full development of the child.