Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,p...Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,phosphorous-containing 1-vinylimidazole salts(called VIDHP and VIDPP)were synthesized through the facile neutralization of the acid and 1-vinylimidazole.VIDHP and VIDPP were then applied as flame-retardant crosslinking agents of VERs,by which phosphorus-containing groups could be incorporated into the resin chain via ionic bonds.VIDHP/VER and VIDPP/VER showed a high curing activity and can be well cured in moderate temperatures.With 20 wt.%additions of VIDHP and VIDPP,VIDHP20/VER,and VIDPP20/VER presented a limiting oxygen index value of 29.7%and 28.4%,respectively,with the latter achieving a UL 94 V0 rating.In the cone calorimetric test,compared to the unmodified VERs,VIDPP20/VER exhibited large reductions in the peak heat release rate,total heat release rate,and total smoke release rate while VIDHP20/VER demonstrated comparatively inferior performance in terms of the heat release.VIDHP20/VER and VIDPP20/VER showed good thermal stability and presented a little lower glass transition temperature than the control sample.VIDPP with a low phosphorus oxidation state(+1)demonstrated high flame-retardant activities in the gaseous phase,whereas VIDHP with a high phosphorus oxidation state(+5)primarily exhibited efficacy in the condensed phase.展开更多
Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to t...Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to the charge transfer between Eu3+ ions and neighboring oxygen anions. A deep red emission at the peak wavelength of 612 nm was observed which could be attributed to the 5D0→7F2 transition in Eu3+ ions. The highest luminance for Y1-x-yGdyNbO4:Eux3+ under 254 nm excitation was achieved at Eu3+ concentration of 18 mol.% (x=0.18) and Gd3+ concentration of 8.2 mol.% (y=0.082). The luminance of Y0.738Gd0.082NbO4:Eu3+0.18 was higher than that of a typical commercial phosphor Y2O3:Eu3+ and the CIE chromaticity coordinate was (0.6490, 0.3506), which was deeper than that of Y2O3:Eu3+. The particle size of the synthesized phosphors was controlled by the NaCl flux and particle size as high as 8 μm with uniform size distribution of particles was obtained.展开更多
Optical properties of hot pressed Sialon ceramics doped with different rare earth oxides(REOs) i.e. Eu2O3, Gd2O3, and Pr2O3 were investigated. The α-Sialon phase was the main phase obtained after sintering as obser...Optical properties of hot pressed Sialon ceramics doped with different rare earth oxides(REOs) i.e. Eu2O3, Gd2O3, and Pr2O3 were investigated. The α-Sialon phase was the main phase obtained after sintering as observed by X-ray diffraction(XRD). The transparency of different samples of varying thickness measured from UV to IR region revealed that the samples were translucent in the visible region while transparent in IR region. The thin samples of 150 μm thickness had transmittance as high as 30% in the visible region. The luminescence was observed in transmittance mode to investigate the effect of sample thickness on luminescence intensity. We observed blue, yellow and red emissions in Sialon doped with Gd2O3, Eu2O3, and Pr2O3, respectively. The excitation wavelength for Gd2O3 and Pr2O3 doped samples were in UV region i.e. 280 and 270 nm, respectively, whereas, for Eu2O3 doped samples was in the blue region(460 nm). The Eu2O3 doped Sialon having 300 μm thickness showed better white light extraction as coupled with blue LED. Moreover, the fabricated phosphor samples exhibited high hardness around 20 GPa and fracture toughness above 5 MPa·m1/2.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51991351 and51903132)the Young Elite Scientist Sponsorship Program by CAST(No.2022QNRC001).
文摘Different reactive flame retardants have been extensively developed for vinyl ester resins(VERs),but very few of them can yield a flame-retardant resin that meets defined standards(e.g.UL-94 V-0 rating).In this work,phosphorous-containing 1-vinylimidazole salts(called VIDHP and VIDPP)were synthesized through the facile neutralization of the acid and 1-vinylimidazole.VIDHP and VIDPP were then applied as flame-retardant crosslinking agents of VERs,by which phosphorus-containing groups could be incorporated into the resin chain via ionic bonds.VIDHP/VER and VIDPP/VER showed a high curing activity and can be well cured in moderate temperatures.With 20 wt.%additions of VIDHP and VIDPP,VIDHP20/VER,and VIDPP20/VER presented a limiting oxygen index value of 29.7%and 28.4%,respectively,with the latter achieving a UL 94 V0 rating.In the cone calorimetric test,compared to the unmodified VERs,VIDPP20/VER exhibited large reductions in the peak heat release rate,total heat release rate,and total smoke release rate while VIDHP20/VER demonstrated comparatively inferior performance in terms of the heat release.VIDHP20/VER and VIDPP20/VER showed good thermal stability and presented a little lower glass transition temperature than the control sample.VIDPP with a low phosphorus oxidation state(+1)demonstrated high flame-retardant activities in the gaseous phase,whereas VIDHP with a high phosphorus oxidation state(+5)primarily exhibited efficacy in the condensed phase.
基金supported by the Chung-Ang University Research Scholarship Grants in 2008 (Sung Hwan Choi)
文摘Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to the charge transfer between Eu3+ ions and neighboring oxygen anions. A deep red emission at the peak wavelength of 612 nm was observed which could be attributed to the 5D0→7F2 transition in Eu3+ ions. The highest luminance for Y1-x-yGdyNbO4:Eux3+ under 254 nm excitation was achieved at Eu3+ concentration of 18 mol.% (x=0.18) and Gd3+ concentration of 8.2 mol.% (y=0.082). The luminance of Y0.738Gd0.082NbO4:Eu3+0.18 was higher than that of a typical commercial phosphor Y2O3:Eu3+ and the CIE chromaticity coordinate was (0.6490, 0.3506), which was deeper than that of Y2O3:Eu3+. The particle size of the synthesized phosphors was controlled by the NaCl flux and particle size as high as 8 μm with uniform size distribution of particles was obtained.
基金supported by Global Research Laboratory(GRL)Program of the National Research Foundation of Korea(NRF)funded by Ministry of Education,Science and Technology(MEST),Republic of Korea(2010-00339)
文摘Optical properties of hot pressed Sialon ceramics doped with different rare earth oxides(REOs) i.e. Eu2O3, Gd2O3, and Pr2O3 were investigated. The α-Sialon phase was the main phase obtained after sintering as observed by X-ray diffraction(XRD). The transparency of different samples of varying thickness measured from UV to IR region revealed that the samples were translucent in the visible region while transparent in IR region. The thin samples of 150 μm thickness had transmittance as high as 30% in the visible region. The luminescence was observed in transmittance mode to investigate the effect of sample thickness on luminescence intensity. We observed blue, yellow and red emissions in Sialon doped with Gd2O3, Eu2O3, and Pr2O3, respectively. The excitation wavelength for Gd2O3 and Pr2O3 doped samples were in UV region i.e. 280 and 270 nm, respectively, whereas, for Eu2O3 doped samples was in the blue region(460 nm). The Eu2O3 doped Sialon having 300 μm thickness showed better white light extraction as coupled with blue LED. Moreover, the fabricated phosphor samples exhibited high hardness around 20 GPa and fracture toughness above 5 MPa·m1/2.
基金financially supported by the National Natural Science Foundation of China(12074324 and 11374247)the Science,Technology,and Innovation Commission of Shenzhen Municipality(JCJY20180508163404043 and JCYJ20170818141709893)。