The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear program...The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear programming(ILP)based modeling and solution schemes that ignore the graph-related features of WAMS,in this work,the PDCP problem is solved through a heuristic graphbased two-phase procedure(TPP):topology partitioning,and phasor data concentrator(PDC)provisioning.Based on the existing minimum k-section algorithms in graph theory,the k-base topology partitioning algorithm is proposed.To improve the performance,the“center-node-last”pre-partitioning algorithm is proposed to give an initial partition before the k-base partitioning algorithm is applied.Then,the PDC provisioning algorithm is proposed to locate PDCs into the decomposed sub-graphs.The proposed TPP was evaluated on five different IEEE benchmark test power systems and the achieved overall communication performance compared to the ILP based schemes show the validity and efficiency of the proposed method.展开更多
This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angl...This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.展开更多
Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those s...Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those synchronized data measurements are extracted in the form of amplitude and phase from various locations of the power grid to monitor and control the power system condition.A PMU device is a crucial part of the power equipment in terms of the cost and operative point of view.However,such ongoing development and improvement to PMUs’principal work are essential to the network operators to enhance the grid quality and the operating expenses.This paper introduces a proposed method that led to lowcost and less complex techniques to optimize the performance of PMU using Second-Order Kalman Filter.It is based on the Asyncrhophasor technique resulting in a phase error minimization when receiving the signal from an access point or from the main access point.The MATLAB model has been created to implement the proposed method in the presence of Gaussian and non-Gaussian.The results have shown the proposed method which is Second-Order Kalman Filter outperforms the existing model.The results were tested usingMean Square Error(MSE).The proposed Second-Order Kalman Filter method has been replaced with a synchronization unit into thePMUstructure to clarify the significance of the proposed new PMU.展开更多
With the advent of phasor measurement unit (PMU) technology, the grid observability has got a new dimension. This facet of technology helps in getting the real-time and dynamic scenario of the grid operations which wa...With the advent of phasor measurement unit (PMU) technology, the grid observability has got a new dimension. This facet of technology helps in getting the real-time and dynamic scenario of the grid operations which was a remote possibility some decades before. Achieving this level of observability puts us at an advantage of responding to the system faults with reduced response time, and helps in restoring the grid stability within fraction of second. This paper demonstrates the detailed fault characterization from the PMU inputs, after illustrations from various real-time examples and different faults occurred in India. This paper tries to shed some light on areas where the accurate fault characterization can help the operator in taking the right decision for reliable grid operations.展开更多
Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of su...Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.展开更多
This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault curre...This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault current. In this paper, an index based on phasors change is proposed for HIF detection. The phasors are measured by PMU to obtain the square summation of errors. Two types of data are used for error calculation. The first one is sampled data and the second one is estimated data. But this index is not enough to declare presence of a HIF. Therefore another index introduces in order to distinguish the load switching from HIF. Second index utilizes 3rd harmonic current angle because this number of harmonic has a special behaviour during HIF. The verification of the proposed method is done by different simulation cases in EMTP/MATLAB.展开更多
To realize the efficient transient simulation of a grid-connected power generation system based on multiple inverters, this paper proposes a hybrid simulation method integrating the models of electromagnetic transient...To realize the efficient transient simulation of a grid-connected power generation system based on multiple inverters, this paper proposes a hybrid simulation method integrating the models of electromagnetic transient and dynamic phasors. Based on a demonstration of the concepts and properties of dynamic phasors, the models of single-phase and three-phase inverters described by dynamic phasors are established first. Considering the numerical compatibility problem between dynamic phasors and instantaneous values, an interface scheme between dynamic phasors and instantaneous values is designed, and the efficiency and precision differences of various transformation methods are compared in detail.Finally, by utilizing MATLAB/Simulink, a hybrid simulation platform of a multi-inverter grid-connected system is built, and the efficiency and accuracy of the hybrid simulation are validated via comparison with the full electromagnetic transient simulation.展开更多
The synchronizing torque of a power system may be weakened by increasing installation of static power converters accompanied by renewable energy resources because they used to trade their favorable active power by syn...The synchronizing torque of a power system may be weakened by increasing installation of static power converters accompanied by renewable energy resources because they used to trade their favorable active power by synchronizing their output voltage with the one at the point of common coupling. In the circumstances, a concept of Virtual Synchronous Machine (VSM) is proposed, where the self-commutated power converters are emulating synchronous generators. This paper describes a converter control to contribute to enhancing the synchronizing torque. The proposed control is similar to the VSM but it simply realizes active power trades among power generation units including converter-based generators by modulating phase angles of their output voltages. Therefore, it can provide an effective support to regulate the system frequency where the total rated power of the converter-based generators increases as much as the one of conventional rotating generators like a microgrid. This paper especially focuses on its robustness where the number of converter-based generators is increased or they are dispersed in the power network. The effectiveness is verified by simulation study based on instantaneous values.展开更多
This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine th...This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.展开更多
In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
Grid-following voltage source converter(GFLVSC)and grid-forming voltage source converter(GFM-VSC)have different dynamic characteristics for active power-frequency and reactive power-voltage supports of the power grid....Grid-following voltage source converter(GFLVSC)and grid-forming voltage source converter(GFM-VSC)have different dynamic characteristics for active power-frequency and reactive power-voltage supports of the power grid.This paper aims to clarify and recognize the difference between gridfollowing(GFL)and grid-forming(GFM)frequency-voltage support more intuitively and clearly.Firstly,the phasor model considering circuit constraints is established based on the port circuit equations of the converter.It is revealed that the voltage and active power linearly correspond to the horizontal and vertical axes in the phasor space referenced to the grid voltage phasor.Secondly,based on topological homology,GFL and GFM controls are transformed and mapped into different trajectories.The topological similarity of the characteristic curves for GFL and GFM controls is the essential cause of their uniformity.Based on the above model,it is indicated that GFL-VSC and GFM-VSC possess uniformity with regard to active power response,type of coupling,and phasor trajectory.They differ in synchronization,power coupling mechanisms,dynamics,and active power-voltage operation domain in the quasi-steady state.Case studies are undertaken on GFL-VSC and GFM-VSC integrated into a four-machine two-area system.Simulation results verify that the dynamic uniformity and difference of GFL-VSC and GFM-VSC are intuitively and comprehensively revealed.展开更多
To achieve more precise monitoring of state fluctuations in the power network close to renewable energy sources, it is necessary to utilize phasor measurements and shorten the time interval between state estimations. ...To achieve more precise monitoring of state fluctuations in the power network close to renewable energy sources, it is necessary to utilize phasor measurements and shorten the time interval between state estimations. For large-scale power systems, however, estimating all of their states with shorter time intervals means a drastic increase in computational burden. As a tradeoff between accuracy and computational efficiency, a multi-time interval forecasting-aided state estimation approach is proposed in this paper, where states with various degrees of fluctuations are estimated asynchronously with different time intervals. Based on the newest state estimate, forecasting-aided state estimators are employed to predict states at time moments prior to the next round of measurement update and state estimation. Extensive numerical tests have demonstrated the effectiveness of the proposed approach.展开更多
Hyperspectral stimulated Raman scattering(SRS)microscopy is rapidly becoming an established method for chemical and biomedical imaging due to the combination of high spatial resolution and chemical information contain...Hyperspectral stimulated Raman scattering(SRS)microscopy is rapidly becoming an established method for chemical and biomedical imaging due to the combination of high spatial resolution and chemical information contained within the three-dimensional data set.Chemometric analysis techniques based on linear unmixing,or multivariate analysis,have become indispensable when visualizing hyperspectral data sets.The application of spectral phasor analysis has also been extremely fruitful in this regard,providing a convenient method to retrieve the spatial and chemical components of the data set.Here,we demonstrate the application of spectral phasor analysis for unmixing the overlapping spectral features within the cell-silent region of the SRS spectrum(2000−2300 cm^(−1)).In doing so,we show it is possible to identify specific Raman signals for DNA,proteins,and lipids following glucose-d7 metabolism in dividing cells.In addition,we show that spectral phasor analysis is capable of distinguishing different bioorthogonal Raman signals including alkynes and carbon−deuterium(C−D)bonds.We demonstrate the application of spectral phasor analysis for multicomponent unmixing of bioorthogonal Raman groups for high-content cellular imaging applications.展开更多
Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This l...Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness.展开更多
Macrophages exhibit a spectrum of behaviors upon activation and are generally classified as one of two types:inflammatory(M1)or anti-inflammatory(M2).Tracking these phenotypes in living cells can provide insight into ...Macrophages exhibit a spectrum of behaviors upon activation and are generally classified as one of two types:inflammatory(M1)or anti-inflammatory(M2).Tracking these phenotypes in living cells can provide insight into immune function but remains a challenging pursuit.Existing methods are mostly limited to static readouts or are difficult to employ for multiplexed imaging in complex 3D environments while maintaining cellular resolution.We aimed to fill this void using bioluminescent technologies.Here we report genetically engineered luciferase reporters for the long-term monitoring of macrophage polarization via spectral phasor analysis.M1-and M2-specific promoters were used to drive the expression of bioluminescent enzymes in macrophage cell lines.The readouts were multiplexed and discernible in both 2D and 3D formats with single-cell resolution in living samples.Collectively,this work expands the toolbox of methods for monitoring macrophage polarization and provides a blueprint for monitoring other multifaceted networks in heterogeneous environments.展开更多
Synchrophasors are time-synchronized electrical measurements that represent both the magnitude and phase angle of the electrical sinusoids. Synchrophasors are measured by fast time-stamped devices called phasor measur...Synchrophasors are time-synchronized electrical measurements that represent both the magnitude and phase angle of the electrical sinusoids. Synchrophasors are measured by fast time-stamped devices called phasor measurement units(PMUs) to constitute the basis of realtime monitoring and control actions in the electric grid.Due to its enhanced situational awareness capabilities,many applications of PMUs are presented in the literature in the past decades. This paper presents a comprehensive summary of synchrophasor technology, its architecture,optimal placement techniques and its applications in electric power transmission and distribution systems. These applications include wide-area situational awareness and monitoring, state estimation, fault location and protective relaying, islanding detection etc. This review also covers some of the existing challenges in its implementation and its potential applications.展开更多
基金supported by the National Key Research and Development Program of China(2023YFB 2906403).
文摘The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear programming(ILP)based modeling and solution schemes that ignore the graph-related features of WAMS,in this work,the PDCP problem is solved through a heuristic graphbased two-phase procedure(TPP):topology partitioning,and phasor data concentrator(PDC)provisioning.Based on the existing minimum k-section algorithms in graph theory,the k-base topology partitioning algorithm is proposed.To improve the performance,the“center-node-last”pre-partitioning algorithm is proposed to give an initial partition before the k-base partitioning algorithm is applied.Then,the PDC provisioning algorithm is proposed to locate PDCs into the decomposed sub-graphs.The proposed TPP was evaluated on five different IEEE benchmark test power systems and the achieved overall communication performance compared to the ILP based schemes show the validity and efficiency of the proposed method.
文摘This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.
文摘Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those synchronized data measurements are extracted in the form of amplitude and phase from various locations of the power grid to monitor and control the power system condition.A PMU device is a crucial part of the power equipment in terms of the cost and operative point of view.However,such ongoing development and improvement to PMUs’principal work are essential to the network operators to enhance the grid quality and the operating expenses.This paper introduces a proposed method that led to lowcost and less complex techniques to optimize the performance of PMU using Second-Order Kalman Filter.It is based on the Asyncrhophasor technique resulting in a phase error minimization when receiving the signal from an access point or from the main access point.The MATLAB model has been created to implement the proposed method in the presence of Gaussian and non-Gaussian.The results have shown the proposed method which is Second-Order Kalman Filter outperforms the existing model.The results were tested usingMean Square Error(MSE).The proposed Second-Order Kalman Filter method has been replaced with a synchronization unit into thePMUstructure to clarify the significance of the proposed new PMU.
文摘With the advent of phasor measurement unit (PMU) technology, the grid observability has got a new dimension. This facet of technology helps in getting the real-time and dynamic scenario of the grid operations which was a remote possibility some decades before. Achieving this level of observability puts us at an advantage of responding to the system faults with reduced response time, and helps in restoring the grid stability within fraction of second. This paper demonstrates the detailed fault characterization from the PMU inputs, after illustrations from various real-time examples and different faults occurred in India. This paper tries to shed some light on areas where the accurate fault characterization can help the operator in taking the right decision for reliable grid operations.
基金supported by the National Key R&D Pro gram (2017YFB0902901)National Nature Science Founda tion of China (51725702, 51627811, 51707064)。
文摘Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.
文摘This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault current. In this paper, an index based on phasors change is proposed for HIF detection. The phasors are measured by PMU to obtain the square summation of errors. Two types of data are used for error calculation. The first one is sampled data and the second one is estimated data. But this index is not enough to declare presence of a HIF. Therefore another index introduces in order to distinguish the load switching from HIF. Second index utilizes 3rd harmonic current angle because this number of harmonic has a special behaviour during HIF. The verification of the proposed method is done by different simulation cases in EMTP/MATLAB.
基金supported by the State Grid Science and Technology Project (grant no. KJ2021-069)。
文摘To realize the efficient transient simulation of a grid-connected power generation system based on multiple inverters, this paper proposes a hybrid simulation method integrating the models of electromagnetic transient and dynamic phasors. Based on a demonstration of the concepts and properties of dynamic phasors, the models of single-phase and three-phase inverters described by dynamic phasors are established first. Considering the numerical compatibility problem between dynamic phasors and instantaneous values, an interface scheme between dynamic phasors and instantaneous values is designed, and the efficiency and precision differences of various transformation methods are compared in detail.Finally, by utilizing MATLAB/Simulink, a hybrid simulation platform of a multi-inverter grid-connected system is built, and the efficiency and accuracy of the hybrid simulation are validated via comparison with the full electromagnetic transient simulation.
文摘The synchronizing torque of a power system may be weakened by increasing installation of static power converters accompanied by renewable energy resources because they used to trade their favorable active power by synchronizing their output voltage with the one at the point of common coupling. In the circumstances, a concept of Virtual Synchronous Machine (VSM) is proposed, where the self-commutated power converters are emulating synchronous generators. This paper describes a converter control to contribute to enhancing the synchronizing torque. The proposed control is similar to the VSM but it simply realizes active power trades among power generation units including converter-based generators by modulating phase angles of their output voltages. Therefore, it can provide an effective support to regulate the system frequency where the total rated power of the converter-based generators increases as much as the one of conventional rotating generators like a microgrid. This paper especially focuses on its robustness where the number of converter-based generators is increased or they are dispersed in the power network. The effectiveness is verified by simulation study based on instantaneous values.
文摘This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
基金supported by National Key R&D Program of China(No.2022YFB4202304)。
文摘Grid-following voltage source converter(GFLVSC)and grid-forming voltage source converter(GFM-VSC)have different dynamic characteristics for active power-frequency and reactive power-voltage supports of the power grid.This paper aims to clarify and recognize the difference between gridfollowing(GFL)and grid-forming(GFM)frequency-voltage support more intuitively and clearly.Firstly,the phasor model considering circuit constraints is established based on the port circuit equations of the converter.It is revealed that the voltage and active power linearly correspond to the horizontal and vertical axes in the phasor space referenced to the grid voltage phasor.Secondly,based on topological homology,GFL and GFM controls are transformed and mapped into different trajectories.The topological similarity of the characteristic curves for GFL and GFM controls is the essential cause of their uniformity.Based on the above model,it is indicated that GFL-VSC and GFM-VSC possess uniformity with regard to active power response,type of coupling,and phasor trajectory.They differ in synchronization,power coupling mechanisms,dynamics,and active power-voltage operation domain in the quasi-steady state.Case studies are undertaken on GFL-VSC and GFM-VSC integrated into a four-machine two-area system.Simulation results verify that the dynamic uniformity and difference of GFL-VSC and GFM-VSC are intuitively and comprehensively revealed.
基金supported in part by the National Natural Science Foundation of China(No.51977115).
文摘To achieve more precise monitoring of state fluctuations in the power network close to renewable energy sources, it is necessary to utilize phasor measurements and shorten the time interval between state estimations. For large-scale power systems, however, estimating all of their states with shorter time intervals means a drastic increase in computational burden. As a tradeoff between accuracy and computational efficiency, a multi-time interval forecasting-aided state estimation approach is proposed in this paper, where states with various degrees of fluctuations are estimated asynchronously with different time intervals. Based on the newest state estimate, forecasting-aided state estimators are employed to predict states at time moments prior to the next round of measurement update and state estimation. Extensive numerical tests have demonstrated the effectiveness of the proposed approach.
基金University of Strathclyde and the EPSRC(EP/N010914/1)for funding.
文摘Hyperspectral stimulated Raman scattering(SRS)microscopy is rapidly becoming an established method for chemical and biomedical imaging due to the combination of high spatial resolution and chemical information contained within the three-dimensional data set.Chemometric analysis techniques based on linear unmixing,or multivariate analysis,have become indispensable when visualizing hyperspectral data sets.The application of spectral phasor analysis has also been extremely fruitful in this regard,providing a convenient method to retrieve the spatial and chemical components of the data set.Here,we demonstrate the application of spectral phasor analysis for unmixing the overlapping spectral features within the cell-silent region of the SRS spectrum(2000−2300 cm^(−1)).In doing so,we show it is possible to identify specific Raman signals for DNA,proteins,and lipids following glucose-d7 metabolism in dividing cells.In addition,we show that spectral phasor analysis is capable of distinguishing different bioorthogonal Raman signals including alkynes and carbon−deuterium(C−D)bonds.We demonstrate the application of spectral phasor analysis for multicomponent unmixing of bioorthogonal Raman groups for high-content cellular imaging applications.
基金supported by the National Natural Sci-ence Foundation of China(No.52077195).
文摘Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness.
基金supported by the U.S.National Institutes of Health(R01 GM107630 to J.A.P.)the Paul G.Allen Frontiers Group(to J.A.P,M.A.D.,L.S,G.T.)supported by a NSF Graduate Research Fellowship(DGE-1321846)。
文摘Macrophages exhibit a spectrum of behaviors upon activation and are generally classified as one of two types:inflammatory(M1)or anti-inflammatory(M2).Tracking these phenotypes in living cells can provide insight into immune function but remains a challenging pursuit.Existing methods are mostly limited to static readouts or are difficult to employ for multiplexed imaging in complex 3D environments while maintaining cellular resolution.We aimed to fill this void using bioluminescent technologies.Here we report genetically engineered luciferase reporters for the long-term monitoring of macrophage polarization via spectral phasor analysis.M1-and M2-specific promoters were used to drive the expression of bioluminescent enzymes in macrophage cell lines.The readouts were multiplexed and discernible in both 2D and 3D formats with single-cell resolution in living samples.Collectively,this work expands the toolbox of methods for monitoring macrophage polarization and provides a blueprint for monitoring other multifaceted networks in heterogeneous environments.
文摘Synchrophasors are time-synchronized electrical measurements that represent both the magnitude and phase angle of the electrical sinusoids. Synchrophasors are measured by fast time-stamped devices called phasor measurement units(PMUs) to constitute the basis of realtime monitoring and control actions in the electric grid.Due to its enhanced situational awareness capabilities,many applications of PMUs are presented in the literature in the past decades. This paper presents a comprehensive summary of synchrophasor technology, its architecture,optimal placement techniques and its applications in electric power transmission and distribution systems. These applications include wide-area situational awareness and monitoring, state estimation, fault location and protective relaying, islanding detection etc. This review also covers some of the existing challenges in its implementation and its potential applications.