Extended target detection performance can be enhanced by using phase-modulated waveform designs in band-limited radar systems. Unlike waveforms designed for the total energy constraint, phase-modulated waveforms can f...Extended target detection performance can be enhanced by using phase-modulated waveform designs in band-limited radar systems. Unlike waveforms designed for the total energy constraint, phase-modulated waveforms can fully exploit the transmit power in the pulse duration, which is more suit- able for practical radar systems. An alternating iterative algorithm was developed to optimize the phase-modulated baseband waveform by maximizing the signal-to-noise ratio (SNR) at the receiver filter output. The output SNR increases continuously with the number of iterations and the algorithm is guaran- teed to converge. Simulations validate the effectiveness of this approach. The waveforms designed by this method outperform other commonly used waveforms for extended target detection.展开更多
With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex ele...With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex electromagnetic environment, a waveform intelligent optimization model based on intelligent optimization algorithm is proposed. By virtue of the universality and fast running speed of the intelligent optimization algorithm, the model can optimize the parameters used to synthesize the countermeasure waveform according to different external signals, so as to improve the countermeasure performance.Genetic algorithm(GA) and particle swarm optimization(PSO)are used to simulate the intelligent optimization of interruptedsampling and phase-modulation repeater waveform. The experimental results under different radar signal conditions show that the scheme is feasible. The performance comparison between the algorithms and some problems in the experimental results also provide a certain reference for the follow-up work.展开更多
Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnos...Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes.展开更多
Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which...Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system.展开更多
A Mixed Numerology OFDM(MN-OFDM)system is essential in 6G and beyond.However,it encounters challenges due to Inter-Numerology Interference(INI).The upcoming 6G technology aims to support innovative applications with h...A Mixed Numerology OFDM(MN-OFDM)system is essential in 6G and beyond.However,it encounters challenges due to Inter-Numerology Interference(INI).The upcoming 6G technology aims to support innovative applications with high data rates,low latency,and reliability.Therefore,effective handling of INI is crucial to meet the diverse requirements of these applications.To address INI in MN-OFDM systems,this paper proposes a User-Based Numerology and Waveform(UBNW)approach that uses various OFDM-based waveforms and their parameters to mitigate INI.By assigning a specific waveform and numerology to each user,UBNW mitigates INI,optimizes service characteristics,and addresses user demands efficiently.The required Guard Bands(GB),expressed as a ratio of user bandwidth,vary significantly across different waveforms at an SIR of 25 dB.For instance,OFDM-FOFDM needs only 2.5%,while OFDM-UFMC,OFDM-WOLA,and conventional OFDM require 7.5%,24%,and 40%,respectively.The time-frequency efficiency also varies between the waveforms.FOFDM achieves 85.6%,UFMC achieves 81.6%,WOLA achieves 70.7%,and conventional OFDM achieves 66.8%.The simulation results demonstrate that the UBNW approach not only effectively mitigates INI but also enhances system flexibility and time-frequency efficiency while simultaneously reducing the required GB.展开更多
Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy...Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy procedures.Adaptive waveform inversion(AWI),a variant of full waveform inversion(FWI),has shown potential in intracranial ultrasound imaging.However,the robustness of AWI is affected by the parameterization of the Gaussian penalty matrix and the challenges posed by transcranial scenarios.Conventional AWI struggles to produce accurate images in these cases,limiting its application in critical medical settings.To address these issues,we propose a stabilized adaptive waveform inversion(SAWI)method,which introduces a user-defined zero-lag position for theWiener filter.Numerical experiments demonstrate that SAWI can achieve accurate imaging under Gaussian penalty matrix parameter settings where AWI fails,perform successful transcranial imaging in configurations where AWI cannot,and maintain the same imaging accuracy as AWI.The advantage of this method is that it achieves these advancements without modifying the AWI framework or increasing computational costs,which helps to promote the application of AWI in medical fields,particularly in transcranial scenarios.展开更多
This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi...This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.展开更多
Waveform regulator in charge is a method that can realize multi-source detonation wave superposition through a single point detonation.The method does not need to weaken the strength of shell,and relies on the high st...Waveform regulator in charge is a method that can realize multi-source detonation wave superposition through a single point detonation.The method does not need to weaken the strength of shell,and relies on the high stress generated by superposition to cut shell into regular fragments.Additionally,it can be combined with different initiation methods to alter the fragmentation outcomes.In this study,aiming at the fracture strain of metal cylindrical shell driven by explosive charge with waveform regulator,theoretical analysis was first adopted to obtain the prediction model of the fracture strain of cylindrical shell with waveform regulator and the model of the axial distribution of the stress concentration factor.On this basis,both theoretical analysis and numerical models were utilized to investigate the effect of waveform regulator on the initial velocity of fragments.Finally,experiments were conducted to validate the fracture strain prediction model for cylindrical shell with waveform regulator.The research results show that the collision angles of the detonation waves at different axial positions are different,which leads to the stress concentration factor on the shell presenting a trend of gradually decreasing,then sharply increasing,and then rapidly decreasing along the axial direction.Additionally,the changes in the slot spacing and the thickness of outer charge will also affect the stress concentration factor,and the influence of outer charge thickness is relatively large.The smaller the ratio of charge volume to waveform regulator volume,the larger the axial sparse wave intensity and the more the fragment initial velocity decrease.From the initiation end to the non-initiation end,the failure modes of the shell sequentially change from pure shear,to mixed tensile-shear,and finally to pure tensile failure.The experimental results are in good agreement with the calculated results of the fracture strain model,and the maximum relative error is less than 10%,which indicates that the fracture strain prediction model of the cylindrical shell with waveform regulator established in this paper by considering the increase of elastic energy per unit volume caused by stress concentration on the shell is reliable.展开更多
Seismic source locations can characterize the spatial and temporal distributions of seismic sources,and can provide important basic data for earthquake disaster monitoring,fault activity characterization,and fracture ...Seismic source locations can characterize the spatial and temporal distributions of seismic sources,and can provide important basic data for earthquake disaster monitoring,fault activity characterization,and fracture growth interpretation.Waveform stacking-based location methods invert the source locations by focusing the source energy with multichannel waveforms,and these methods exhibit a high level of automation and noise-resistance.Taking the cross-correlation stacking(CCS)method as an example,this work attempts to study the influential factors of waveform stacking-based methods,and introduces a comprehensive performance evaluation scheme based on multiple parameters and indicators.The waveform data are from field monitoring of induced microseismicity in the Changning region(southern Sichuan Basin of China).Synthetic and field data tests reveal the impacts of three categories of factors on waveform stacking-based location:velocity model,monitoring array,and waveform complexity.The location performance is evaluated and further improved in terms of the source imaging resolution and location error.Denser array monitoring contributes to better constraining source depth and location reliability,but the combined impact of multiple factors,such as velocity model uncertainty and multiple seismic phases,increases the complexity of locating field microseismic events.Finally,the aspects of location uncertainty,phase detection,and artificial intelligencebased location are discussed.展开更多
Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model ...Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process.展开更多
Full waveform inversion(FWI)is a complex data fitting process based on full wavefield modeling,aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution.However,this...Full waveform inversion(FWI)is a complex data fitting process based on full wavefield modeling,aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution.However,this process is highly nonlinear and ill-posed,therefore achieving high-resolution imaging of complex biological tissues within a limited number of iterations remains challenging.We propose a multiscale frequency–domain full waveform inversion(FDFWI)framework for ultrasound computed tomography(USCT)imaging of biological tissues,which innovatively incorporates Sobolev space norm regularization for enhancement of prior information.Specifically,we investigate the effect of different types of hyperparameter on the imaging quality,during which the regularization weight is dynamically adapted based on the ratio of the regularization term to the data fidelity term.This strategy reduces reliance on predefined hyperparameters,ensuring robust inversion performance.The inversion results from both numerical and experimental tests(i.e.,numerical breast,thigh,and ex vivo pork-belly tissue)demonstrate the effectiveness of our regularized FWI strategy.These findings will contribute to the application of the FWI technique in quantitative imaging based on USCT and make USCT possible to be another high-resolution imaging method after x-ray computed tomography and magnetic resonance imaging.展开更多
Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in t...Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.展开更多
Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI present...Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI presents the following challenges,such as low convergence efficiency,high dependence on the initial model,and the energy imbalance in deep region of the inverted model.To solve these inherent problems,we develop a timedomain elastic FWI method based on gradient preconditioning with the following details:(1)the limited memory Broyden Fletcher Goldfarb Shanno method with faster convergence is adopted to im-prove the inversion stability;(2)a multi-scaled inversion strategy is used to alleviate the nonlinear inversion instead of falling into the local minimum;(3)in addition,the pseudo-Hessian preconditioned illumination operator is involved for preconditioning the parameter gradients to improve the illumination equilibrium degree of deep structures.Based on the programming implementation of the new method,a deep depression model with five diffractors is used for testing.Compared with the conventional elastic FWI method,the technique proposed by this study has better effectiveness and accuracy on the inversion effect and con-vergence,respectively.展开更多
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multi- ple-input multiple-output (M1MO) radar is a new radar concept and has superiority over conv...Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multi- ple-input multiple-output (M1MO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incor- porating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are ex- pressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.展开更多
We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). I...We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.展开更多
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filte...A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.展开更多
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ...Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.展开更多
In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable...In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.展开更多
The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted....The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted. With one-dimension stress wave theory, ANSYS/LS-DYNA software and experiment, the effect rules of the projectile's front-head style and the accelerometer's mounted base's length on acceleration waveform were analyzed. The results show that the acceleration duration inspired from Hopkinson bar is almost equal to the rising edge time of perfect half sine stress wave, and it is independent to the mounted base's length. Moreover, the projectile's fronthead style is a main affecting factor, and the projectiles with less Conical degrees will produce the lower amplitude and longer acceleration duration.展开更多
基金Supported by the National Natural Science Foundation of China(No. 60901057)the National Key Basic Research and Devel-opment (973) Program of China (No. 2010CB731901)
文摘Extended target detection performance can be enhanced by using phase-modulated waveform designs in band-limited radar systems. Unlike waveforms designed for the total energy constraint, phase-modulated waveforms can fully exploit the transmit power in the pulse duration, which is more suit- able for practical radar systems. An alternating iterative algorithm was developed to optimize the phase-modulated baseband waveform by maximizing the signal-to-noise ratio (SNR) at the receiver filter output. The output SNR increases continuously with the number of iterations and the algorithm is guaran- teed to converge. Simulations validate the effectiveness of this approach. The waveforms designed by this method outperform other commonly used waveforms for extended target detection.
文摘With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex electromagnetic environment, a waveform intelligent optimization model based on intelligent optimization algorithm is proposed. By virtue of the universality and fast running speed of the intelligent optimization algorithm, the model can optimize the parameters used to synthesize the countermeasure waveform according to different external signals, so as to improve the countermeasure performance.Genetic algorithm(GA) and particle swarm optimization(PSO)are used to simulate the intelligent optimization of interruptedsampling and phase-modulation repeater waveform. The experimental results under different radar signal conditions show that the scheme is feasible. The performance comparison between the algorithms and some problems in the experimental results also provide a certain reference for the follow-up work.
基金supported by the National Key Research and Development Program of China(2022YFA1404400)the National Natural Science Foundation of China(62122072,12174368,61705216,62405306)+4 种基金Anhui Provincial Department of Science and Technology(202203a07020020,18030801138)Anhui Provincial Natural Science Foundation(2308085QA21,2408085QF187)the USTC Research Funds of the Double First-Class Initiative(YD2090002015)the Institute of Artificial Intelligence at Hefei Comprehensive National Science Center(23YGXT005)the Fundamental Research Funds for the Central Universities(WK2090000083).
文摘Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes.
基金supported by the National Key Research and Development Program of China(No.2022YFA1604703)the National Natural Science Foundation of China(No.12375189)the National Key Research and Development Program of China(No.2021YFA1601300)。
文摘Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system.
文摘A Mixed Numerology OFDM(MN-OFDM)system is essential in 6G and beyond.However,it encounters challenges due to Inter-Numerology Interference(INI).The upcoming 6G technology aims to support innovative applications with high data rates,low latency,and reliability.Therefore,effective handling of INI is crucial to meet the diverse requirements of these applications.To address INI in MN-OFDM systems,this paper proposes a User-Based Numerology and Waveform(UBNW)approach that uses various OFDM-based waveforms and their parameters to mitigate INI.By assigning a specific waveform and numerology to each user,UBNW mitigates INI,optimizes service characteristics,and addresses user demands efficiently.The required Guard Bands(GB),expressed as a ratio of user bandwidth,vary significantly across different waveforms at an SIR of 25 dB.For instance,OFDM-FOFDM needs only 2.5%,while OFDM-UFMC,OFDM-WOLA,and conventional OFDM require 7.5%,24%,and 40%,respectively.The time-frequency efficiency also varies between the waveforms.FOFDM achieves 85.6%,UFMC achieves 81.6%,WOLA achieves 70.7%,and conventional OFDM achieves 66.8%.The simulation results demonstrate that the UBNW approach not only effectively mitigates INI but also enhances system flexibility and time-frequency efficiency while simultaneously reducing the required GB.
基金supported by the National Natural Science Foundation of China(Grant No.82151302)the National High Level Hospital Clinical Research Funding(Grant No.2022-PUMCH-B-113)+1 种基金the National High Level Hospital Clinical Research Funding(Grant No.2022-PUMCH-A-019)the CAMS Innovation Fund for Medical Sciences(Grant No.2021-12M-1-014).
文摘Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases,preoperative planning of craniotomies and intraoperative management during craniotomy procedures.Adaptive waveform inversion(AWI),a variant of full waveform inversion(FWI),has shown potential in intracranial ultrasound imaging.However,the robustness of AWI is affected by the parameterization of the Gaussian penalty matrix and the challenges posed by transcranial scenarios.Conventional AWI struggles to produce accurate images in these cases,limiting its application in critical medical settings.To address these issues,we propose a stabilized adaptive waveform inversion(SAWI)method,which introduces a user-defined zero-lag position for theWiener filter.Numerical experiments demonstrate that SAWI can achieve accurate imaging under Gaussian penalty matrix parameter settings where AWI fails,perform successful transcranial imaging in configurations where AWI cannot,and maintain the same imaging accuracy as AWI.The advantage of this method is that it achieves these advancements without modifying the AWI framework or increasing computational costs,which helps to promote the application of AWI in medical fields,particularly in transcranial scenarios.
基金supported by the National Key R&D Program of China (No. 2022YFE0204100)the National Natural Science Foundation of China (12205067 and 12375199)the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF. 2022036)。
文摘This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.
基金supported by the National Natural Science Foundation of China(Grant No.12302437)Natural Science Foundation of Jiangsu Province(Grant No.SBK2023045424)。
文摘Waveform regulator in charge is a method that can realize multi-source detonation wave superposition through a single point detonation.The method does not need to weaken the strength of shell,and relies on the high stress generated by superposition to cut shell into regular fragments.Additionally,it can be combined with different initiation methods to alter the fragmentation outcomes.In this study,aiming at the fracture strain of metal cylindrical shell driven by explosive charge with waveform regulator,theoretical analysis was first adopted to obtain the prediction model of the fracture strain of cylindrical shell with waveform regulator and the model of the axial distribution of the stress concentration factor.On this basis,both theoretical analysis and numerical models were utilized to investigate the effect of waveform regulator on the initial velocity of fragments.Finally,experiments were conducted to validate the fracture strain prediction model for cylindrical shell with waveform regulator.The research results show that the collision angles of the detonation waves at different axial positions are different,which leads to the stress concentration factor on the shell presenting a trend of gradually decreasing,then sharply increasing,and then rapidly decreasing along the axial direction.Additionally,the changes in the slot spacing and the thickness of outer charge will also affect the stress concentration factor,and the influence of outer charge thickness is relatively large.The smaller the ratio of charge volume to waveform regulator volume,the larger the axial sparse wave intensity and the more the fragment initial velocity decrease.From the initiation end to the non-initiation end,the failure modes of the shell sequentially change from pure shear,to mixed tensile-shear,and finally to pure tensile failure.The experimental results are in good agreement with the calculated results of the fracture strain model,and the maximum relative error is less than 10%,which indicates that the fracture strain prediction model of the cylindrical shell with waveform regulator established in this paper by considering the increase of elastic energy per unit volume caused by stress concentration on the shell is reliable.
基金supported by National Natural Science Foundation of China(Nos.42374076,42174128 and 42004115)Natural Science Foundation for Excellent Young Scholars of Hunan Province,China(No.2022JJ 20057)+1 种基金Central South University Innovation-Driven Research Programme(No.2023CXQD063)the Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology(No.2022B1212010002).
文摘Seismic source locations can characterize the spatial and temporal distributions of seismic sources,and can provide important basic data for earthquake disaster monitoring,fault activity characterization,and fracture growth interpretation.Waveform stacking-based location methods invert the source locations by focusing the source energy with multichannel waveforms,and these methods exhibit a high level of automation and noise-resistance.Taking the cross-correlation stacking(CCS)method as an example,this work attempts to study the influential factors of waveform stacking-based methods,and introduces a comprehensive performance evaluation scheme based on multiple parameters and indicators.The waveform data are from field monitoring of induced microseismicity in the Changning region(southern Sichuan Basin of China).Synthetic and field data tests reveal the impacts of three categories of factors on waveform stacking-based location:velocity model,monitoring array,and waveform complexity.The location performance is evaluated and further improved in terms of the source imaging resolution and location error.Denser array monitoring contributes to better constraining source depth and location reliability,but the combined impact of multiple factors,such as velocity model uncertainty and multiple seismic phases,increases the complexity of locating field microseismic events.Finally,the aspects of location uncertainty,phase detection,and artificial intelligencebased location are discussed.
基金supported by the China Postdoctoral Science Foundation(Grant No.2024MF750281)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230326)+1 种基金the Natural Science Foundation Project of Sichuan Province(Grant No.2025ZNSFSC1170)Sichuan Science and Technology Program(Grant No.2023ZYD0158).
文摘Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process.
基金supported by the National Natural Science Foundation of China(Grant No.12474461)the Basic and Frontier Exploration Project Independently Deployed by Institute of Acoustics,Chinese Academy of Sciences(Grant No.JCQY202402)the Goal-Oriented Project Independently Deployed by Institute of Acoustics,Chinese Academy of Sciences(Grant No.MBDX202113).
文摘Full waveform inversion(FWI)is a complex data fitting process based on full wavefield modeling,aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution.However,this process is highly nonlinear and ill-posed,therefore achieving high-resolution imaging of complex biological tissues within a limited number of iterations remains challenging.We propose a multiscale frequency–domain full waveform inversion(FDFWI)framework for ultrasound computed tomography(USCT)imaging of biological tissues,which innovatively incorporates Sobolev space norm regularization for enhancement of prior information.Specifically,we investigate the effect of different types of hyperparameter on the imaging quality,during which the regularization weight is dynamically adapted based on the ratio of the regularization term to the data fidelity term.This strategy reduces reliance on predefined hyperparameters,ensuring robust inversion performance.The inversion results from both numerical and experimental tests(i.e.,numerical breast,thigh,and ex vivo pork-belly tissue)demonstrate the effectiveness of our regularized FWI strategy.These findings will contribute to the application of the FWI technique in quantitative imaging based on USCT and make USCT possible to be another high-resolution imaging method after x-ray computed tomography and magnetic resonance imaging.
基金supported by the National Natural Science Foundation of China(62001481,61890542)the Natural Science Foundation of Hunan Province(2021JJ40686).
文摘Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM020001)the National Key R&D Program of China(Grant No.2019YFC0605503C)+2 种基金the Major Scientific and Technological Projects of China National Petroleum Corporation(CNPC)(Grant No.ZD2019-183-003)the National Outstanding Youth Science Foundation(Grant No.41922028)the National Innovation Group Project(Grant No.41821002).
文摘Based on waveform fitting,full waveform inversion(FWI)is an important inversion method with the ability to reconstruct multi-parameter models in high precision.However,the strong nonlinear equation used in FWI presents the following challenges,such as low convergence efficiency,high dependence on the initial model,and the energy imbalance in deep region of the inverted model.To solve these inherent problems,we develop a timedomain elastic FWI method based on gradient preconditioning with the following details:(1)the limited memory Broyden Fletcher Goldfarb Shanno method with faster convergence is adopted to im-prove the inversion stability;(2)a multi-scaled inversion strategy is used to alleviate the nonlinear inversion instead of falling into the local minimum;(3)in addition,the pseudo-Hessian preconditioned illumination operator is involved for preconditioning the parameter gradients to improve the illumination equilibrium degree of deep structures.Based on the programming implementation of the new method,a deep depression model with five diffractors is used for testing.Compared with the conventional elastic FWI method,the technique proposed by this study has better effectiveness and accuracy on the inversion effect and con-vergence,respectively.
基金National Natural Science Foundation of China (60901056)National Basic Research Program of China (6139303)
文摘Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multi- ple-input multiple-output (M1MO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incor- porating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are ex- pressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.
基金State Natural Scientific Foundation (49734150) and National High Performance Computation Foundation.
文摘We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.
文摘A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.
基金supported by the China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2011ZX05004-003)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (NO.2011A-3603)+1 种基金the Natural Science Foundation of China (No.41104066)the RIPED Young Professional Innovation Fund (NO.2010-13-16-02, 2010-A-26-02)
文摘Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
基金The National Natural Science Foundation of China(No.61240032)the Natural Science Foundation of Jiangsu Province(No.BK2012560)+1 种基金the College Scientific and Technological Achievements Transformation Promotion Project of Jiangsu Province(No.JH-05)the Science and Technology Support Program of Jiangsu Province(No.BE2012740)
文摘In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.
文摘The freestyle Hopkinson bar is a kind of main high g loading equipment utilized widely in calibration of high g accelerometer and other high shock conditions. The calibration experiment of accelerometer was conducted. With one-dimension stress wave theory, ANSYS/LS-DYNA software and experiment, the effect rules of the projectile's front-head style and the accelerometer's mounted base's length on acceleration waveform were analyzed. The results show that the acceleration duration inspired from Hopkinson bar is almost equal to the rising edge time of perfect half sine stress wave, and it is independent to the mounted base's length. Moreover, the projectile's fronthead style is a main affecting factor, and the projectiles with less Conical degrees will produce the lower amplitude and longer acceleration duration.