期刊文献+
共找到9,533篇文章
< 1 2 250 >
每页显示 20 50 100
Photoluminescence enhancement of YAG:Ce^(3+) phosphor prepared by co-precipitation-rheological phase method 被引量:12
1
作者 叶信宇 龙震 +3 位作者 杨幼明 聂华平 郭艳伟 蔡裕发 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第1期21-24,共4页
YAG:Ce3+ phosphor was prepared by a novel co-precipitation-rheological phase method.The resulting YAG:Ce3+ phosphor was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and photolumine... YAG:Ce3+ phosphor was prepared by a novel co-precipitation-rheological phase method.The resulting YAG:Ce3+ phosphor was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and photoluminescent emission spectra.By using acetic acid as solvent,YAG:Ce3+ powder with small particle size(≤2 μm) was obtained at a relatively lower sintering temperature of 1400 oC.With the content of acetic acid increasing,small particles dissolved and disappeared,but larger particles grew up and changed its shape from spherical to partially rectangular.Meanwhile,the emission intensity of the sample prepared by co-precipitation-rheological phase method was about 43% higher than that of the sample prepared by co-precipitation method.It was assumed that the significant improvement of luminescence was mainly because the rheological phase presented a better diffusion environment,and therefore,a better homogeneity of activators of Ce3+. 展开更多
关键词 PHOSPHORS LUMINESCENCE YAG:Ce3+ co-precipitation-rheological phase method rare earths
原文传递
Two-phase Method without Any Artificial Variable 被引量:1
2
作者 梁平 张旭利 张相斌 《Northeastern Mathematical Journal》 CSCD 2008年第5期395-398,共4页
A method is provided to achieve an initial basic feasible solution of a linear programming in this paper. This method dose not need introducing any artificial variable, but needs only solving an auxiliary linear progr... A method is provided to achieve an initial basic feasible solution of a linear programming in this paper. This method dose not need introducing any artificial variable, but needs only solving an auxiliary linear programming. Compared with the traditional two-phase method, it has advantages of saving the memories and reducing the computational efforts. 展开更多
关键词 initial basic feasible solution auxiliary linear programming two-phase method artificial variable
在线阅读 下载PDF
Application of Stationary Phase Method to Wind Stress and Breaking Impacts on Ocean Relatively High Waves
3
作者 Augustin Daika Theodule Nkoa Nkomom Cesar Mbane Biouele 《Open Journal of Marine Science》 2014年第1期18-24,共7页
Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle ... Wind stress impacts on ocean relatively high waves can be perfectly illustrated by a recurrent phenomenon in the Sahara desert. Indeed, on this area where the surface wind can blow without encountering major obstacle out of the sand dunes, these main targets are gradually eroded and displaced by the wind on dozens of meters. This experience highlights the action of wind on granular targets (clusters of sand or water slides) and motivates studies similar to ours, where we want to simulate impact of wind stress and breaking on the spatio-temporal evolution of the envelope of ocean relatively high waves: Impact which can inappropriately deflect the waves on ships, oil platforms or coastal infrastructures. Euler and Navier-Stokes equations allow a mathematical formulation of the gravity wave motion (ocean waves are considered in our work as a system of water particles which are held together by low surface tension) and wind acts on targets through friction forces or stress. Michel Talon stationary phase method is used to numerically solve the equations that model the impact of wind on a stationary Gaussian. 展开更多
关键词 Wind Stress GRANULAR TARGETS Low Surface Tension STATIONARY phase method STATIONARY GAUSSIAN
暂未订购
A Spectral Projected Gradient-Newton Two Phase Method for Constrained Nonlinear Equations
4
作者 Yuezhe Zhang 《Journal of Applied Mathematics and Physics》 2019年第1期104-110,共7页
In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm... In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence. 展开更多
关键词 CONSTRAINED SEMISMOOTH Equations SPECTRAL Projected Gradient method NEWTON method Two-phase
在线阅读 下载PDF
A mixed phase-field model for fracture propagation behavior in Gulong shale with complex wavy bedding
5
作者 Siwei Meng Zihan Zhang +3 位作者 Wenlong Xu Hao Yu Hengan Wu He Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6308-6323,共16页
Shale reservoirs have abundant bedding structures,which deeply alter the mechanical properties of rocks,and thus affect the reservoir stimulation performance.Previous research mostly focuses on the effects of parallel... Shale reservoirs have abundant bedding structures,which deeply alter the mechanical properties of rocks,and thus affect the reservoir stimulation performance.Previous research mostly focuses on the effects of parallel bedding on fracture propagation,while the mechanical properties and mechanisms of fracture propagation remain unclear for rocks with complex wavy bedding(e.g.China’s continentalorigin Gulong shale).Herein,a mixed phase-field fracture model of the wavy-bedding shale was applied,based on the local tension-compression decomposition phase field method(PFM)and geometric structure generation algorithm for the bedding with controllable morphological features.The parametric analysis of fracture propagation behaviors in the case of abundant complex bedding structures showed that with wavy bedding,the vertical fracture propagation rate is far higher than the horizontal propagation rate.Moreover,the development of branch fractures is suppressed during the fracturing process of the wavy-bedding sample,and the stimulated volume is limited,which is different from the characteristic of parallel bedding that promotes horizontal fracture initiation and propagation.The results showed that larger amplitudes,higher frequencies,higher inclination angles,and larger strengths of wavy bedding all promote the formation of vertical penetrating fractures and suppress the growth of branch fractures.Under such circumstances,it is hard to create a well-connected fracture network after fracturing.This research may provide a theoretical basis for understanding fracture behaviors in rocks with such complex wavy bedding. 展开更多
关键词 Continental shale Complex wavy bedding Cracking behavior phase field method Branch fractures
在线阅读 下载PDF
Effect of forced lamina flow on microsegregation simulated by phase field method quantitatively 被引量:4
6
作者 王军伟 王智平 +3 位作者 路阳 朱昌盛 冯力 肖荣振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期391-397,共7页
The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled wi... The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow. 展开更多
关键词 computer simulation phase field method solidification forced lamina flow MICROSEGREGATION solute redistribution shrinkage cavity
在线阅读 下载PDF
Ageing process of pre-precipitation phase in Ni_(0.75)Al_(0.05)Fe_(0.2) alloy based on phase field method 被引量:4
7
作者 董卫平 王永欣 +1 位作者 陈铮 杨坤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1105-1111,共7页
By utilizing phase field method combined with analysis on free energy and interatomic potentials, pre-precipitation phase formation and transformation process of Ni0.75Al0.05Fe0.2 alloy in early precipitation stage du... By utilizing phase field method combined with analysis on free energy and interatomic potentials, pre-precipitation phase formation and transformation process of Ni0.75Al0.05Fe0.2 alloy in early precipitation stage during the ageing process under 1 000 K were studied. And free energy, microstructures, compositions and volume fractions of pre-precipitation phase and equilibrium phase were analyzed. The simulation results indicate that nonstoichiometric Llo pre-precipitation phase formed first, and then would gradually transform into L12 equilibrium phase. It is discovered that the phase transformation process was closely related to free energy and interatomic potentials. Additionally, it is revealed that free energy of Llo pre-precipitation phase was higher and interatomic potential was smaller than that of L12 equilibrium phase. Therefore, it is concluded that Llo phase was unstable, and phase transformation would occur to L12 which was more stable. 展开更多
关键词 pre-precipitation phase equilibrium phase interatomic potentials free energy phase field method
在线阅读 下载PDF
Phase field method simulation of faceted dendrite growth with arbitrary symmetries 被引量:1
8
作者 陈志 陈佩 +3 位作者 巩贺贺 段培培 郝丽梅 金克新 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第2期290-297,共8页
A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth m... A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh grid is above 640×640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value, crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries. 展开更多
关键词 phase field method strong anisotropy faceted dendrite Wulff theory tip velocity SYMMETRY
在线阅读 下载PDF
Solid-gas Phase Preparation Method for Porous Molybdenum Trioxide 被引量:1
9
作者 REN Jie MU Shichun +5 位作者 YANG Daohe LI Xuejing DONG Shengqi ZHU Junwei LIN Xianghai DONG Xuebin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期495-500,共6页
A novel solid-gas reaction preparation technology was used to adjust the composition and microstructure of the composite crystal materials by changing the preparation parameters. Compared with the commonly used sol-ge... A novel solid-gas reaction preparation technology was used to adjust the composition and microstructure of the composite crystal materials by changing the preparation parameters. Compared with the commonly used sol-gel method, acid base neutralization sedimentation method, hydrothermal method, and gas phase deposition method, the technology was relatively simplified and the elemental composition was controllable, without the use of openings and additives. A kind of multi-element composite porous metal oxide was obtained by pre-intercalation and decarburization. In order to increase the porosity of MoO3 material and promote the adsorption and diffusion of reactant molecules, the microstructure of MoO3 was studied. The preparation process of porous molybdenum trioxide by solid gas combination process was discussed, which provides an innovative idea for the design and preparation of new materials with a large specific surface area and other desirable properties. 展开更多
关键词 molybdenum trioxide porous structure solid-gas phase method SYNTHETIC
原文传递
Yaw controller design of stratospheric airship based on phase plane method 被引量:4
10
作者 Miao Jinggang Zhou Jianghua +1 位作者 Nie Ying Yang Xin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期738-745,共8页
Recently, stratospheric airships prefer to employ a vectored tail rotor or differential main propellers for the yaw control, rather than the control surfaces like common low-altitude airship. The load capacity of vect... Recently, stratospheric airships prefer to employ a vectored tail rotor or differential main propellers for the yaw control, rather than the control surfaces like common low-altitude airship. The load capacity of vectored mechanism and propellers are always limited by the weight and strength, which bring challenges for the attitude controller. In this paper, the yaw channel of airship dynamics is firstly rewritten as a simplified two-order dynamics equation and the dynamic charac- teristics is analyzed with a phase plane method. Analysis shows that when ignoring damping, the yaw control channel is available to the minimum principle of Pontryagin for optimal control, which can obtain a Bang-Bang controller. But under this controller, the control output could he bouncing around the theoretical switch curve due to the presence of disturbance and damping, which makes adverse effects for the servo structure. Considering the structure requirements of actuators, a phase plane method controller is employed, with a dead zone surrounded by several phase switch curve. Thus, the controller outputs are limited to finite values. Finally, through the numerical simulation and actual flight experiment, the method is proved to be effective. 展开更多
关键词 Attitude control Dynamics modeling Optimal control phase plane method Stratospheric airship
原文传递
Simulation of faceted dendrite growth of non-isothermal alloy in forced flow by phase field method 被引量:5
11
作者 陈志 郝丽梅 陈长乐 《Journal of Central South University》 SCIE EI CAS 2011年第6期1780-1788,共9页
Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a cry... Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated. 展开更多
关键词 phase field method forced flow strong anisotropy faceted dendrite steady state tip velocity
在线阅读 下载PDF
Anisotropic growth of multigrain in equiaxial solidification simulated with the phase field method 被引量:2
12
作者 李梅娥 肖志英 +1 位作者 杨根仓 周尧和 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第1期219-223,共5页
The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidifica... The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidification is developed, which takes into account the random crystallographic orientations of crystallites and preserves the rotational invariance of the free energy. The morphological evolution of equiaxial multigrain solidification is predicted and the effect of composition on transformation kinetics is studied. The numerical results indicate that due to the soft impingement of grains the Avrami exponent varies with the initial melt composition and the solidification fraction. 展开更多
关键词 multigrain SOLIDIFICATION transformation kinetics phase field method
原文传递
Integration of machine learning with phase field method to model the electromigration induced Cu_(6)Sn_(5) IMC growth at anode side Cu/Sn interface 被引量:3
13
作者 Anil Kunwar Yuri Amorim Coutinho +2 位作者 Johan Hektor Haitao Ma Nele Moelans 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第24期203-219,共17页
Currently,in the era of big data and 5G communication technology,electromigration has become a serious reliability issue for the miniaturized solder joints used in microelectronic devices.Since the effective charge nu... Currently,in the era of big data and 5G communication technology,electromigration has become a serious reliability issue for the miniaturized solder joints used in microelectronic devices.Since the effective charge number(Z*)is considered as the driving force for electromigration,the lack of accurate experimental values for Z* poses severe challenges for the simulation-aided design of electronic materials.In this work,a data-driven framework is developed to predict the Z* values of Cu and Sn species at the anode based LIQUID,Cu_(6)Sn_(5) intermetallic compound(IMC)and FCC phases for the binary Cu-Sn system undergoing electromigration at 523.15 K.The growth rate constants(kem)of the anode IMC at several magnitudes of applied low current density(j=1×10^6 to 10×10^6A/m^2)are extracted from simulations based on a 1D multi-phase field model.A neural network employing Z* and j as input features,whereas utilizing these computed kemdata as the expected output is trained.The results of the neural network analysis are optimized with experimental growth rate constants to estimate the effective charge numbers.For a negligible increase in temperature at low j values,effective charge numbers of all phases are found to increase with current density and the increase is much more pronounced for the IMC phase.The predicted values of effective charge numbers Z* are then utilized in a 2D simulation to observe the anode IMC grain growth and electrical resistance changes in the multi-phase system.As the work consists of the aspects of experiments,theory,computation,and machine learning,it can be called the four paradigms approach for the study of electromigration in Pb-free solder.Such a combination of multiple paradigms of materials design can be problem-solving for any future research scenario that is marked by uncertainties regarding the determination of material properties. 展开更多
关键词 phase field method Artificial neural network Intemetallic compound Current density Synchrotron radiation
原文传递
A numerical implementation of the length-scale independent phase field method 被引量:2
14
作者 Wenlong Zhang Ala Tabiei Donald French 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第1期92-104,I0003,共14页
The phase field method for fracture integrates the Griffith theory and damage mechanics approach to predict crack initiation and propagation within one framework.It replaced the discrete representation of crack by dif... The phase field method for fracture integrates the Griffith theory and damage mechanics approach to predict crack initiation and propagation within one framework.It replaced the discrete representation of crack by diffusive damage and solved it based on a minimization of the global energy storage functional.As a result,no crack tracking topology is needed,and complex crack shapes can be captures without user intervention.However,it is also reported to have an inconsistency between the predicted fracture toughness and the material strength.Recently,a novel energetic degradation function was proposed in literature to handle this issue.This research does some further modifications to the global energy storage functional so that Newton's method can be directly used to solve the energy minimization.With the new energy form,direct implementation of the length-scale independent phase field method into finite element packages like LS-DYNA becomes possible.This paper presents the framework and details of implementing the length-scale independent phase field method into LS-DYNA through a user-defined element and material subroutine.Several numerical examples are presented to compare with the experiment crack shape.Most importantly,this paper is one of the first ones to quantitatively predict accurate force response compared to experiments.These examples verify the accuracy of the new energy form and implementation. 展开更多
关键词 phase field method Length-scale independency Newton’s method LS-DYNA
原文传递
Analysis on high-temperature oxidation and growth stress of iron-based alloy using phase field method 被引量:1
15
作者 杨帆 刘彬 方岱宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期757-764,共8页
High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been... High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments. 展开更多
关键词 high-temperature OXIDATION phase field method growth stress
在线阅读 下载PDF
Numerical Simulations of Equiaxed Dendrite Growth Using Phase Field Method 被引量:1
16
作者 YutuoZHANG WeichengPANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第1期51-53,共3页
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pu... Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material was numerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domain of undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solved using the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patterns was shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated. 展开更多
关键词 phase field method Dendritic growth Numerical simulation
在线阅读 下载PDF
Crack propagation simulation in brittle elastic materials by a phase field method 被引量:2
17
作者 Xingxue Lu Cheng Li +2 位作者 Ying Tie Yuliang Hou Chuanzeng Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第6期339-352,共14页
To overcome the difficulties of re-meshing and tracking the crack-tip in other computational methods for crack propagation simulations,the phase field method based on the minimum energy principle is introduced by defi... To overcome the difficulties of re-meshing and tracking the crack-tip in other computational methods for crack propagation simulations,the phase field method based on the minimum energy principle is introduced by defining a continuous phase field variable(x)∈[0,1]to characterize discontinuous cracks in brittle materials.This method can well describe the crack initiation and propagation without assuming the shape,size and orientation of the initial crack in advance.In this paper,a phase field method based on Miehe's approach[Miehe et al.,Comp.Meth.App.Mech.Eng.(2010)]is applied to simulate different crack propagation problems in twodimensional(2D),isotropic and linear elastic materials.The numerical implementation of the phase field method is realized within the framework of the finite element method(FEM).The validity,accuracy and efficiency of the present method are verified by comparing the numerical results with other reference results in literature.Several numerical examples are presented to show the effects of the loading type(tension and shear),boundary conditions,and initial crack location and orientation on the crack propagation path and force-displacement curve.Furthermore,for a single edge-cracked bi-material specimen,the influences of the loading type and the crack location on the crack propagation trajectory and force-displacement curve are also investigated and discussed.It is demonstrated that the phase field method is an efficient tool for the numerical simulation of the crack propagation problems in brittle elastic materials,and the corresponding results may have an important relevance for predicting and preventing possible crack propagations in engineering applications. 展开更多
关键词 BRITTLE FRACTURE phase field method CRACK propagation FINITE ELEMENT method
在线阅读 下载PDF
RESEARCH ON METHOD TO CALCULATE VELOCITIES OF SOLID PHASE AND LIQUID PHASE IN DEBRIS FLOW 被引量:4
18
作者 陈洪凯 唐红梅 陈野鹰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期399-408,共10页
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two... Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation. 展开更多
关键词 debris flow two-phase fluid velocities of solid phase and liquid phase calculation method VERIFICATION
在线阅读 下载PDF
3D anisotropy simulation of dendrites growth with phase field method 被引量:1
19
作者 侯华 赵宇辉 牛晓峰 《中国有色金属学会会刊:英文版》 CSCD 2008年第A01期223-228,共6页
The anisotropy problem of 3D phase-field model was studied,and various degrees of anisotropy were simulated by numerical calculation method.The results show that with the change of interface anisotropy coefficients,fr... The anisotropy problem of 3D phase-field model was studied,and various degrees of anisotropy were simulated by numerical calculation method.The results show that with the change of interface anisotropy coefficients,from smooth transition to the appearance of angle,equilibrium crystals shape morphology has a critical value,and 3D critical value is 0.3.The growth of dendrites is stable and the interface is smooth when it is less than critical value;the interface is unstable,rolling edge appears and the growth is discontinuous when it is more than critical value.With the increase of anisotropy coefficients,the dendrites grow faster under the same condition. 展开更多
关键词 3D叠前深度偏移 各向异性 材料复合技术 相域法 金属材料
在线阅读 下载PDF
Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method 被引量:1
20
作者 窦虎 马红梅 孙玉宝 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期117-121,共5页
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ... The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change. 展开更多
关键词 finite-difference time-domain method blue phase liquid crystal display in-plane switching convergence effect
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部