In this paper, a new analytical method for vibration analysis of a cracked simply supported beam is investigated. By considering a nonlinear model for the fatigue crack, the governing equation of motion of the cracked...In this paper, a new analytical method for vibration analysis of a cracked simply supported beam is investigated. By considering a nonlinear model for the fatigue crack, the governing equation of motion of the cracked beam is solved using perturbation method. The solution of the governing equation reveals the superhaxmonics of the fundamental frequency due to the nonlinear effects in the dynamic response of the cracked beam. Furthermore, considering such a solution, an explicit expression is also derived for the system damping changes due to the changes in the crack parameters, geometric dimensions and mechanical properties of the cracked beam. The results show that an increase in the crack severity and approaching the crack location to the middle of the beam increase the system damping. In order to validate the results, changes in the fundamental frequency ratios against the fatigue crack severities are compared with those of experimental results available in the literature. Also, a comparison is made between the free response of the cracked beam with a given crack depth and location obtained by the proposed analytical solution and that of the numerical method. The results of the proposed method agree with the experimental and numerical results.展开更多
Fundamental principles from structural dynamics,random theory and perturbation methods are adopted to develop a new response spectrum combination rule for the seismic analysis of non-classically damped systems,such as...Fundamental principles from structural dynamics,random theory and perturbation methods are adopted to develop a new response spectrum combination rule for the seismic analysis of non-classically damped systems,such as structure-damper systems. The approach,which is named the perturbation spectrum method,can provide a more accurate evaluation of a non-classically damped system's mean peak response in terms of the ground response spectrum. To account for the effect of non-classical damping,all elements are included in the proposed method for seismic analysis of structure,which is usually ap-proximated by ignoring the off-diagonal elements of the modal damping matrix. Moreover,as has been adopted in the traditional Complete Quadratic Combination (CQC) method,the white noise model is also used to simplify the expressions of perturbation correlation coefficients. Finally,numerical work is performed to examine the accuracy of the proposed method by comparing the approximate results with exact ones and to demonstrate the importance of the neglected off-diagonal elements of the modal damping matrix. In the examined cases,the proposed method shows good agreement with direct time-history integration. Also,the perturbation spectrum method leads to a more efficient and economical calculation by avoiding the integral and complex operation.展开更多
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs...Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.展开更多
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
In this article,time fractional Fornberg-Whitham equation of He’s fractional derivative is studied.To transform the fractional model into its equivalent differential equation,the fractional complex transform is used ...In this article,time fractional Fornberg-Whitham equation of He’s fractional derivative is studied.To transform the fractional model into its equivalent differential equation,the fractional complex transform is used and He’s homotopy perturbation method is implemented to get the approximate analytical solutions of the fractional-order problems.The graphs are plotted to analysis the fractional-order mathematical modeling.展开更多
Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly effi...Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events.展开更多
With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnair...With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnaire covering six dimensions,including public transportation,sanitation and environment,and supporting facility construction,was designed.A total of 208 valid samples were collected,and SPSS was employed for reliability and validity tests as well as IPA analysis.The findings were as follows:①Visitors were generally quite satisfied with the overall public services in Huilongguan Sports and Cultural Park.②The highest satisfaction levels were observed in sanitation and environment services and the sports and cultural atmosphere,while lower satisfaction was noted for supporting facility construction and public information services.③The advantage enhancement zone includes sanitation and environment services and sports and cultural atmosphere;and the continuous maintenance zone includes public transportation services and security management amd maintenance;the subsequent opportunity zone includes supporting facility construction and public information services;and there are no dimensions in the urgent improvement zone.The study recommends strengthening the service connotations from three aspects:enhancing facilities with sports as the core,optimizing services with a people-centered approach,and upgrading the information platform through technological efficiency.Additionally,a multi-stakeholder collaborative mechanism involving the government in coordinating policy resources,the operator in improving implementation efficiency,and the public participating in supervision and evaluation is proposed to drive the enhancement of public service quality at Huilongguan Sports and Cultural Park.展开更多
In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear ...In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear systems of the Navier-Stokes equations; by the iterations formula of HAM, the first approximation solutions and the second approximation solutions are successively obtained and Homotopy Perturbation Method(HPM) is also used to solve these equations; finally,approximate solutions by HAM of(2+1)-dimensional Navier-Stokes equations without perturbation terms and with perturbation terms are compared. Because of the freedom of choice the auxiliary parameter of HAM, the results demonstrate that the rapid convergence and the high accuracy of the HAM in solving Navier-Stokes equations; due to the effects of perturbation terms, the 3 rd-order approximation solutions by HAM and HPM have great fluctuation.展开更多
In this paper, an effective numerical method for physically nonlinear interaction analysis is studied, in which the elasto-plastic problem of coupled analysis between the structure and medium may be transformed into s...In this paper, an effective numerical method for physically nonlinear interaction analysis is studied, in which the elasto-plastic problem of coupled analysis between the structure and medium may be transformed into several linear problems by means of the perturbation technique, then, the finite strip method and finite layer method are used to analyze the underground structure and rock medium, respectively, for their corresponding linear problems, so the purpose of simplifying the calculation can be achieved. This kind of method has made use of the twice semi-analytical technique: the perturbation and semi-analytic solution function to simplify 3-D nonlinear coupled problem into 1-D linear numerical one. In addition, this method is a new advance of semi-analytical method in the application to nonlinear problems by means of combinating with the analytical perturbation method, and it is also a branch of the perturbational numerical method developed in last years.展开更多
This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure d...This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure distribution in gear drive through theperturbation of a cubic order geometry,there by greatly bringing down both computationwork volume and cost and providing a powerful tool for engineering study on the effectof errors on structural strength.展开更多
The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturb...The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.展开更多
To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The R...To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The RBM,constructed via eigenvector continuation and trained on both bound and resonant configurations,enables the fast and accurate emulation of resonance properties across the parameter space.To identify the physical resonant states from the emulator’s output,we introduce an overlap-based selection technique that effectively isolates true solutions from background artifacts.By applying this framework to unbound nucleus ^(6)Be,we quantified the model uncertainty in the predicted complex energies.The results demonstrate relative errors of 17.48%in the real part and 8.24%in the imaginary part,while achieving a speedup of four orders of magnitude compared with the full GCC calculations.To further investigate the asymptotic behavior of the resonant-state wavefunctions within the RBM framework,we employed a Lippmann–Schwinger(L–S)-based correction scheme.This approach not only improves the consistency between eigenvalues and wavefunctions but also enables a seamless extension from real-space training data to the complex energy plane.By bridging the gap between bound-state and continuum regimes,the L–S correction significantly enhances the emulator’s capability to accurately capture continuum structures in open quantum systems.展开更多
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill...In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.展开更多
Objective:This study aims to explore the benefit analysis of the same disease in different departments of public hospitals under the DIP payment method.Methods:This study is a retrospective analysis that selected clin...Objective:This study aims to explore the benefit analysis of the same disease in different departments of public hospitals under the DIP payment method.Methods:This study is a retrospective analysis that selected clinical data from patients who received treatment in the Department of Orthopedics and the Department of Acupuncture and Moxibustion at our hospital from January 1,2023,to December 31,2023.The study compared the costs of medications,examinations,treatments,laboratory tests,nursing and other expenses,and total treatment costs between the two departments.It analyzed the cost structure of the two departments and proposed further improvement suggestions.Results:The study results indicated that the total costs in the Department of Acupuncture and Moxibustion were significantly higher than those in the Department of Orthopedics.Among medication costs,the total medication costs in the Department of Orthopedics were higher than those in the Department of Acupuncture and Moxibustion,with costs for Western medicine,proprietary Chinese medicine,and herbal medicine all being higher(p<0.05).Regarding examination costs,consultation fees in the Department of Orthopedics were lower than those in the Department of Acupuncture and Moxibustion,while examination costs were higher(p<0.05).In terms of treatment costs,orthopedic treatment and surgical fees were higher than those in the Department of Acupuncture and Moxibustion(p<0.05).For laboratory test costs,orthopedic laboratory fees were significantly higher than those in the Department of Acupuncture and Moxibustion(p<0.05).Among nursing and other expenses,orthopedic blood transfusion,bed fees,and other expenses were higher than those in the Department of Acupuncture and Moxibustion,while nursing fees were lower(p<0.05).Conclusion:Treatment fees in the Department of Acupuncture and Moxibustion are the core and account for a relatively high proportion of the total costs.The benefits generated by the Department of Orthopedics are primarily derived from medication,examination,and laboratory fees,aligning with the characteristics of combining diagnosis,medication,and surgical intervention in orthopedic treatment.Consultation fees,nursing fees,and bed fees in the Department of Acupuncture and Moxibustion are higher than those in the Department of Orthopedics,indicating a longer treatment cycle in acupuncture,which warrants clinical attention.展开更多
This paper applies the multi-scale perturbation method suggested by Ref [3] toinvestigate the linear stability behavior of distorted plane Couette .flow. Using thismethod, the unstable Tollmien-Schlichting wave in pla...This paper applies the multi-scale perturbation method suggested by Ref [3] toinvestigate the linear stability behavior of distorted plane Couette .flow. Using thismethod, the unstable Tollmien-Schlichting wave in plane Couette flow can be found,but not the most unstable mode. By comparing the results of this paper with those ofRef. [3], the effectiveness of this method is investigated.展开更多
The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of gr...The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.展开更多
The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ...The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
To address the deficiency in loss diagnostic methods for turbines working at off-design angles of attack,a novel loss decomposition method suitable for cascade flow with large separation is proposed.The method propose...To address the deficiency in loss diagnostic methods for turbines working at off-design angles of attack,a novel loss decomposition method suitable for cascade flow with large separation is proposed.The method proposed has the following advantages over existing methods:(A)It enables refined loss decomposition for cascade flows,capable of identifying the spatial range of specific regions such as shear layers and backflow regions,thereby obtaining the loss characteristics of these regions.(B)The region identification criteria in this method have clear physical meanings,rather than relying on arbitrary area division.(C)The method has good applicability and is suitable for cascade flows under various angles of attack.Validation shows that this method achieves satisfactory results.Based on this method,the loss mechanisms of a low-pressure turbine cascade at a low Reynolds number of 4.3×10^(4)and angles of attack of-5°,-20°,and-45°are investigated using Large Eddy Simulations(LESs).Entropy analysis quantitatively demonstrates significant differences in the composition of losses among flow regions,due to their different flow characteristics.From the perspective of flow regions,wake loss dominates total loss,while loss in backflow region is negligible.Furthermore,the variation mechanisms of loss with incidence differ among different flow regions.展开更多
The perturbation method and finite strip method are combined to solve the large deflection bending problems of rectangular plates. Perturbation method is used to reduce the nonlinear differential equations into a seri...The perturbation method and finite strip method are combined to solve the large deflection bending problems of rectangular plates. Perturbation method is used to reduce the nonlinear differential equations into a series of linear differential equations. The finite strip method is then employed to tackle these linear equations. Some calculation examples are compared with those got by other methods.展开更多
文摘In this paper, a new analytical method for vibration analysis of a cracked simply supported beam is investigated. By considering a nonlinear model for the fatigue crack, the governing equation of motion of the cracked beam is solved using perturbation method. The solution of the governing equation reveals the superhaxmonics of the fundamental frequency due to the nonlinear effects in the dynamic response of the cracked beam. Furthermore, considering such a solution, an explicit expression is also derived for the system damping changes due to the changes in the crack parameters, geometric dimensions and mechanical properties of the cracked beam. The results show that an increase in the crack severity and approaching the crack location to the middle of the beam increase the system damping. In order to validate the results, changes in the fundamental frequency ratios against the fatigue crack severities are compared with those of experimental results available in the literature. Also, a comparison is made between the free response of the cracked beam with a given crack depth and location obtained by the proposed analytical solution and that of the numerical method. The results of the proposed method agree with the experimental and numerical results.
基金Project supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0518)the Program of Introducing Talents of Discipline to Universities (No. B08014), China
文摘Fundamental principles from structural dynamics,random theory and perturbation methods are adopted to develop a new response spectrum combination rule for the seismic analysis of non-classically damped systems,such as structure-damper systems. The approach,which is named the perturbation spectrum method,can provide a more accurate evaluation of a non-classically damped system's mean peak response in terms of the ground response spectrum. To account for the effect of non-classical damping,all elements are included in the proposed method for seismic analysis of structure,which is usually ap-proximated by ignoring the off-diagonal elements of the modal damping matrix. Moreover,as has been adopted in the traditional Complete Quadratic Combination (CQC) method,the white noise model is also used to simplify the expressions of perturbation correlation coefficients. Finally,numerical work is performed to examine the accuracy of the proposed method by comparing the approximate results with exact ones and to demonstrate the importance of the neglected off-diagonal elements of the modal damping matrix. In the examined cases,the proposed method shows good agreement with direct time-history integration. Also,the perturbation spectrum method leads to a more efficient and economical calculation by avoiding the integral and complex operation.
文摘Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金supported by the National Natural Science Foundation of China under Grant No.11561051。
文摘In this article,time fractional Fornberg-Whitham equation of He’s fractional derivative is studied.To transform the fractional model into its equivalent differential equation,the fractional complex transform is used and He’s homotopy perturbation method is implemented to get the approximate analytical solutions of the fractional-order problems.The graphs are plotted to analysis the fractional-order mathematical modeling.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41930971,42330111,and 42405061)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab).
文摘Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events.
基金Sponsored by The Youth Project of National Social Science Foundation of China(21CTY007)Special Fund for Basic Scientific Research Business Expenses of Central Universities(2024DAWH008).
文摘With Beijing Huilongguan Sports and Cultural Park as the research object,this study was conducted to investigate public service satisfaction in the park by the Importance-Performance Analysis(IPA)method.A questionnaire covering six dimensions,including public transportation,sanitation and environment,and supporting facility construction,was designed.A total of 208 valid samples were collected,and SPSS was employed for reliability and validity tests as well as IPA analysis.The findings were as follows:①Visitors were generally quite satisfied with the overall public services in Huilongguan Sports and Cultural Park.②The highest satisfaction levels were observed in sanitation and environment services and the sports and cultural atmosphere,while lower satisfaction was noted for supporting facility construction and public information services.③The advantage enhancement zone includes sanitation and environment services and sports and cultural atmosphere;and the continuous maintenance zone includes public transportation services and security management amd maintenance;the subsequent opportunity zone includes supporting facility construction and public information services;and there are no dimensions in the urgent improvement zone.The study recommends strengthening the service connotations from three aspects:enhancing facilities with sports as the core,optimizing services with a people-centered approach,and upgrading the information platform through technological efficiency.Additionally,a multi-stakeholder collaborative mechanism involving the government in coordinating policy resources,the operator in improving implementation efficiency,and the public participating in supervision and evaluation is proposed to drive the enhancement of public service quality at Huilongguan Sports and Cultural Park.
文摘In this paper Homotopy Analysis Method(HAM) is implemented for obtaining approximate solutions of(2+1)-dimensional Navier-Stokes equations with perturbation terms. The initial approximations are obtained using linear systems of the Navier-Stokes equations; by the iterations formula of HAM, the first approximation solutions and the second approximation solutions are successively obtained and Homotopy Perturbation Method(HPM) is also used to solve these equations; finally,approximate solutions by HAM of(2+1)-dimensional Navier-Stokes equations without perturbation terms and with perturbation terms are compared. Because of the freedom of choice the auxiliary parameter of HAM, the results demonstrate that the rapid convergence and the high accuracy of the HAM in solving Navier-Stokes equations; due to the effects of perturbation terms, the 3 rd-order approximation solutions by HAM and HPM have great fluctuation.
文摘In this paper, an effective numerical method for physically nonlinear interaction analysis is studied, in which the elasto-plastic problem of coupled analysis between the structure and medium may be transformed into several linear problems by means of the perturbation technique, then, the finite strip method and finite layer method are used to analyze the underground structure and rock medium, respectively, for their corresponding linear problems, so the purpose of simplifying the calculation can be achieved. This kind of method has made use of the twice semi-analytical technique: the perturbation and semi-analytic solution function to simplify 3-D nonlinear coupled problem into 1-D linear numerical one. In addition, this method is a new advance of semi-analytical method in the application to nonlinear problems by means of combinating with the analytical perturbation method, and it is also a branch of the perturbational numerical method developed in last years.
文摘This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure distribution in gear drive through theperturbation of a cubic order geometry,there by greatly bringing down both computationwork volume and cost and providing a powerful tool for engineering study on the effectof errors on structural strength.
文摘The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.
基金supported by the National Key Research and Development Program(MOST 2023YFA1606404 and MOST 2022YFA1602303)the National Natural Science Foundation of China(Nos.12347106,12147101,and 12447122)the China Postdoctoral Science Foundation(No.2024M760489).
文摘To study the uncertainty quantification of resonant states in open quantum systems,we developed a Bayesian framework by integrating a reduced basis method(RBM)emulator with the Gamow coupled-channel(GCC)approach.The RBM,constructed via eigenvector continuation and trained on both bound and resonant configurations,enables the fast and accurate emulation of resonance properties across the parameter space.To identify the physical resonant states from the emulator’s output,we introduce an overlap-based selection technique that effectively isolates true solutions from background artifacts.By applying this framework to unbound nucleus ^(6)Be,we quantified the model uncertainty in the predicted complex energies.The results demonstrate relative errors of 17.48%in the real part and 8.24%in the imaginary part,while achieving a speedup of four orders of magnitude compared with the full GCC calculations.To further investigate the asymptotic behavior of the resonant-state wavefunctions within the RBM framework,we employed a Lippmann–Schwinger(L–S)-based correction scheme.This approach not only improves the consistency between eigenvalues and wavefunctions but also enables a seamless extension from real-space training data to the complex energy plane.By bridging the gap between bound-state and continuum regimes,the L–S correction significantly enhances the emulator’s capability to accurately capture continuum structures in open quantum systems.
基金sponsored by the Graduate Student Research and Innovation Fund of Xinyang Normal University under No.2024KYJJ012.
文摘In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.
文摘Objective:This study aims to explore the benefit analysis of the same disease in different departments of public hospitals under the DIP payment method.Methods:This study is a retrospective analysis that selected clinical data from patients who received treatment in the Department of Orthopedics and the Department of Acupuncture and Moxibustion at our hospital from January 1,2023,to December 31,2023.The study compared the costs of medications,examinations,treatments,laboratory tests,nursing and other expenses,and total treatment costs between the two departments.It analyzed the cost structure of the two departments and proposed further improvement suggestions.Results:The study results indicated that the total costs in the Department of Acupuncture and Moxibustion were significantly higher than those in the Department of Orthopedics.Among medication costs,the total medication costs in the Department of Orthopedics were higher than those in the Department of Acupuncture and Moxibustion,with costs for Western medicine,proprietary Chinese medicine,and herbal medicine all being higher(p<0.05).Regarding examination costs,consultation fees in the Department of Orthopedics were lower than those in the Department of Acupuncture and Moxibustion,while examination costs were higher(p<0.05).In terms of treatment costs,orthopedic treatment and surgical fees were higher than those in the Department of Acupuncture and Moxibustion(p<0.05).For laboratory test costs,orthopedic laboratory fees were significantly higher than those in the Department of Acupuncture and Moxibustion(p<0.05).Among nursing and other expenses,orthopedic blood transfusion,bed fees,and other expenses were higher than those in the Department of Acupuncture and Moxibustion,while nursing fees were lower(p<0.05).Conclusion:Treatment fees in the Department of Acupuncture and Moxibustion are the core and account for a relatively high proportion of the total costs.The benefits generated by the Department of Orthopedics are primarily derived from medication,examination,and laboratory fees,aligning with the characteristics of combining diagnosis,medication,and surgical intervention in orthopedic treatment.Consultation fees,nursing fees,and bed fees in the Department of Acupuncture and Moxibustion are higher than those in the Department of Orthopedics,indicating a longer treatment cycle in acupuncture,which warrants clinical attention.
文摘This paper applies the multi-scale perturbation method suggested by Ref [3] toinvestigate the linear stability behavior of distorted plane Couette .flow. Using thismethod, the unstable Tollmien-Schlichting wave in plane Couette flow can be found,but not the most unstable mode. By comparing the results of this paper with those ofRef. [3], the effectiveness of this method is investigated.
文摘The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.
基金funded by the Bavarian State Ministry of ScienceResearch and Art(Grant number:H.2-F1116.WE/52/2)。
文摘The incremental capacity analysis(ICA)technique is notably limited by its sensitivity to variations in charging conditions,which constrains its practical applicability in real-world scenarios.This paper introduces an ICA-compensation technique to address this limitation and propose a generalized framework for assessing the state of health(SOH)of batteries based on ICA that is applicable under differing charging conditions.This novel approach calculates the voltage profile under quasi-static conditions by subtracting the voltage increase attributable to the additional polarization effects at high currents from the measured voltage profile.This approach's efficacy is contingent upon precisely acquiring the equivalent impedance.To obtain the equivalent impedance throughout the batteries'lifespan while minimizing testing costs,this study employs a current interrupt technique in conjunction with a long short-term memory(LSTM)network to develop a predictive model for equivalent impedance.Following the derivation of ICA curves using voltage profiles under quasi-static conditions,the research explores two scenarios for SOH estimation:one utilizing only incremental capacity(IC)features and the other incorporating both IC features and IC sampling.A genetic algorithm-optimized backpropagation neural network(GABPNN)is employed for the SOH estimation.The proposed generalized framework is validated using independent training and test datasets.Variable test conditions are applied for the test set to rigorously evaluate the methodology under challenging conditions.These evaluation results demonstrate that the proposed framework achieves an estimation accuracy of 1.04%for RMSE and 0.90%for MAPE across a spectrum of charging rates ranging from 0.1 C to 1 C and starting SOCs between 0%and 70%,which constitutes a major advancement compared to established ICA methods.It also significantly enhances the applicability of conventional ICA techniques in varying charging conditions and negates the necessity for separate testing protocols for each charging scenario.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金co-supported by the National Natural Science Foundation of China(No.52176033)the National Science and Technology Major Project,China(No.J2019-II-0012-0032)the Science Center for Gas Turbine Project,China(No.P2022-B-II-009-001)。
文摘To address the deficiency in loss diagnostic methods for turbines working at off-design angles of attack,a novel loss decomposition method suitable for cascade flow with large separation is proposed.The method proposed has the following advantages over existing methods:(A)It enables refined loss decomposition for cascade flows,capable of identifying the spatial range of specific regions such as shear layers and backflow regions,thereby obtaining the loss characteristics of these regions.(B)The region identification criteria in this method have clear physical meanings,rather than relying on arbitrary area division.(C)The method has good applicability and is suitable for cascade flows under various angles of attack.Validation shows that this method achieves satisfactory results.Based on this method,the loss mechanisms of a low-pressure turbine cascade at a low Reynolds number of 4.3×10^(4)and angles of attack of-5°,-20°,and-45°are investigated using Large Eddy Simulations(LESs).Entropy analysis quantitatively demonstrates significant differences in the composition of losses among flow regions,due to their different flow characteristics.From the perspective of flow regions,wake loss dominates total loss,while loss in backflow region is negligible.Furthermore,the variation mechanisms of loss with incidence differ among different flow regions.
文摘The perturbation method and finite strip method are combined to solve the large deflection bending problems of rectangular plates. Perturbation method is used to reduce the nonlinear differential equations into a series of linear differential equations. The finite strip method is then employed to tackle these linear equations. Some calculation examples are compared with those got by other methods.