期刊文献+
共找到9,762篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental realization of a performanceenhanced reservoir computer based on a photonic-filter feedback laser
1
作者 YU HUANG PENGHUA MU +1 位作者 PEI ZHOU NIANQIANG LI 《Photonics Research》 CSCD 2024年第12期2845-2854,共10页
Reservoir computing(RC),especially time-delayed RC,as a lightweight,high-speed machine learning paradigm,shows excellent performance in time-series prediction and recognition tasks.Within this framework,time delays pl... Reservoir computing(RC),especially time-delayed RC,as a lightweight,high-speed machine learning paradigm,shows excellent performance in time-series prediction and recognition tasks.Within this framework,time delays play a vital role in dynamic systems,i.e.,significantly affecting the transient behavior and the dimensionality of reservoirs.In this work,we explore a multidelay system as the core computational element of RC,which is constructed using a semiconductor laser with photonic-filter feedback.We demonstrate experimentally that the photonic-filter feedback scheme can improve the mapping of scalar inputs into higher-dimensional dynamics,and thus enhance the prediction and classification ability in time series and nonlinear channel equalization tasks.In particular,the rich neural dynamics in turn boosts its memory capacity,which offers great potential for short-term prediction of time series.The numerical results show good qualitative agreement with the experiment.We show that improved RC performance can be achieved by utilizing a small coupling coefficient and eschewing feedback at integer multiples,which can induce detrimental resonance.This work provides an alternative photonic platform to achieve high-performance neural networks based on high-dimensional dynamic systems. 展开更多
关键词 performance REALIZATION INTEGER
原文传递
Impact of Oxygen Vacancy on Performance of Amorphous InGaZnO Based Schottky Barrier Diode 被引量:1
2
作者 JIA Bin TONG Xiaowen +3 位作者 HAN Zikang QIN Ming WANG Lifeng HUANG Xiaodong 《发光学报》 北大核心 2025年第3期412-420,共9页
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin... Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes. 展开更多
关键词 INGAZNO Schottky barrier diode oxygen vacancy rectifying performance
在线阅读 下载PDF
Design of high-speed MUTC-PD with electric field regulation layer 被引量:1
3
作者 XU Jian-bo LIU Kai +4 位作者 DONG Xiao-wen DUAN Xiao-feng HUANG Yong-qing WANG Qi REN Xiao-min 《中国光学(中英文)》 北大核心 2025年第2期393-400,共8页
This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field re... This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field regulation layer enhances the PD’s performance by not only reducing and smoothing the electric field intensity in the collector layer,allowing photo-generated electrons to transit at peak drift velocity,but also improving the electric field intensity in the depleted absorber layer and optimizing the photo-generated carriers’saturated transit performance.Additionally,the transport characteristics of the peak drift velocity of photogenerated electrons in the device’s collection layer can be used to optimize its parasitic characteristics.The electron’s peak drift velocity compensates for the lost transit time.Thus improving the 3 dB bandwidth of the PD’s photo response.Finally obtains a MUTC-PD with a 3 dB bandwidth of 68 GHz at a responsivity of 0.502 A/W,making it suitable for 100 Gbit/s optical receivers. 展开更多
关键词 peak electron drift velocity transit performance MUTC-PD optical fiber communication optical interconnect
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells 被引量:1
4
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
5
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Insights into the effect of Y substitution on superlattice structure and electrochemical performance of A_(5)B_(19)-type La-Mg-Ni-based hydrogen storage alloy for nickel metal hydride battery 被引量:5
6
作者 Yanan Guo Wenfeng Wang +5 位作者 Huanhuan Su Hang Lu Yuan Li Qiuming Peng Shumin Han Lu Zhang 《Journal of Materials Science & Technology》 2025年第4期60-69,共10页
La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation pr... La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries. 展开更多
关键词 Nickel metal hydride battery Y element La-Mg-Ni-based alloy A5 B19-type superlattice structure Electrochemical performance
原文传递
Electrochemical behavior and discharge performance of as-rolled precipitate-free Mg-Sn alloy as anode for Mg-air batteries 被引量:2
7
作者 Xu LI Wei-li CHENG +7 位作者 Jian LI Fei-er SHANGGUAN Hui YU Li-fei WANG Hang LI Hong-xia WANG Jin-hui WANG Hua HOU 《Transactions of Nonferrous Metals Society of China》 2025年第3期832-848,共17页
A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anod... A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture. 展开更多
关键词 Mg-air battery Mg-Sn anode grain structure electrochemical behavior discharge performance
在线阅读 下载PDF
Superior specific capacity and energy density simultaneously achieved by Sr/In co-deposition behavior of Mg-Sr-In ternary alloys as anodes for Mg-Air cells 被引量:2
8
作者 Bowen Yu Haitao Jiang Yun Zhang 《Journal of Magnesium and Alloys》 2025年第2期640-653,共14页
In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid... In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid solution atoms in theα-Mg matrix without its second-phase generation,and at the same time facilitates grain refinement,dendritic segregation and Mg17Sr2-phases precipitation.During discharge operation,Sr modifies the film composition via its compounds and promoted the redeposition of In at the substrate/film interface;their co-deposition behavior on the anodic reaction surface enhances anode reaction kinetics,suppresses the negative difference effect(NDE)and mitigates the“chunk effect”(CE),which is contributed to uniform dissolution and low self-corrosion hydrogen evolution rate(HER).Therefore,Mg-Sr-xIn alloy anodes show excellent discharge performance,e.g.,0.5Sr-1.0In shows an average discharge voltage of 1.4234 V and a specific energy density of 1990.71 Wh kg^(-1)at 10 mA cm^(-2).Furthermore,the decisive factor(CE and self-discharge HE)for anodic efficiency are quantitively analyzed,the self-discharge is the main factor of cell efficiency loss.Surprisingly,all Mg-Sr-xIn anodes show anodic efficiency greater than 60%at high current density(≥10 mA cm^(-2)),making them excellent candidate anodes for Mg-Air cells at high-power output. 展开更多
关键词 Mg-air cells CO-DEPOSITION Anode/electrolyte interface Anodic efficiency Discharge performance
在线阅读 下载PDF
A special core-shell material(Mxene@Ag@Phytate)to improve EVA composite fire safety,radiation cross-linking effect,and electromagnetic shielding 被引量:2
9
作者 Si-Yi Xu Dan-Yi Li +4 位作者 Wen-Rui Wang Lin Lin Ying Sun Ji-Hao Li Lin-Fan Li 《Nuclear Science and Techniques》 2025年第2期27-39,共13页
High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polym... High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polymer/MXene nanocom-posites remains challenging owing to the limited flame-retardant properties of MXene itself.This study prepared a novel MXene@Ag@PA hybrid material via radiation modification and complexation reaction.This material was used to further enhance the key properties of ethylene-vinyl acetate(EVA),such as its mechanical properties,thermal conductivity,flame retardancy,and electromagnetic shielding.The addition of two parts of this hybrid material increased the thermal conduc-tivity of EVA by 44.2%and reduced its peak exothermic rate during combustion by 30.1%compared with pure EVA.The material also significantly reduced smoke production and increased the residue content.In the X-band,the electromagnetic shielding effectiveness of the EVA composites reached 20 dB.Moreover,the MXene@Ag@PA hybrid material could be used to further enhance the mechanical properties of EVA composites under electron-beam irradiation.Thus,this study contributes to the development of MXene-based EVA advanced materials that are fire-safe,have high strength,and exhibit good electromagnetic shielding performance for various applications. 展开更多
关键词 MXene@Ag@PA Ethylene-vinyl acetate(EVA) Flame retardancy Electromagnetic shielding performance
在线阅读 下载PDF
An Improved Repetitive-Control System Using a Complex-Coefficient Filter 被引量:1
10
作者 Qicheng Mei Jinhua She +1 位作者 Fei Long Yanjun Shen 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期282-284,共3页
Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter us... Dear Editor,This letter presents an improved repetitive controller(IRC) that uses a complex-coefficient filter to enhance the tracking performance of a system for periodic signals. Compared with the low-pass filter used in the conventional repetitive controller(CRC), the complex-coefficient filter causes less change in the phase and amplitude of a signal at the frequencies of the periodic signal, especially at the fundamental frequency, when the two filters have the same cutofffrequency. 展开更多
关键词 improved repetitive controller irc periodic signals repetitive control system complex coefficient filter tracking performance conventional repetitive controller crc periodic signal enhance tracking performance
在线阅读 下载PDF
From Static and Dynamic Perspectives:A Survey on Historical Data Benchmarks of Control Performance Monitoring 被引量:1
11
作者 Pengyu Song Jie Wang +1 位作者 Chunhui Zhao Biao Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期300-316,共17页
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be... In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research. 展开更多
关键词 Control performance monitoring(CPM) datadriven method historical data benchmark(HIS) industrial process performance index static and dynamic analysis.
在线阅读 下载PDF
The sow vaginal and gut microbiota associated with longevity and reproductive performance 被引量:1
12
作者 Ziyu Liu Tsungcheng Tsai +5 位作者 Bin Zuo Samantha Howe Jason EFarrar Christopher ERandolph Charles VMaxwell Jiangchao Zhao 《Journal of Animal Science and Biotechnology》 2025年第2期577-595,共19页
Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between... Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between the microbiome and sows with longevity in reproduction.Results In this study,we collected and sequenced rectal and vaginal swabs from 48 sows,nine of which completed up to four parities(U4P group),exhibiting reproductive longevity.We first identified predictors of sow longevity in the rectum(e.g.,Akkermansia)and vagina(e.g.,Lactobacillus)of the U4P group using RandomForest in the early breeding stage of the first parity.Interestingly,these bacteria in the U4P group showed decreased predicted KEGG gene abundance involved in the biosynthesis of amino acids.Then,we tracked the longitudinal changes of the micro-biome over four parities in the U4P sows.LEfSe analysis revealed parity-associated bacteria that existed in both the rectum and vagina(e.g.,Streptococcus in Parity 1,Lactobacillus in Parity 2,Veillonella in Parity 4).We also identi-fied patterns of bacterial change between the early breeding stage(d 0)and d 110,such as Streptococcus,which was decreased in all four parties.Furthermore,sows in the U4P group with longevity potential also showed better reproductive performance.Finally,we discovered bacterial predictors(e.g.,Prevotellaceae NK3B31 group)for the total number of piglets born throughout the four parities in both the rectum and vagina.Conclusions This study highlights how the rectal and vaginal microbiome in sows with longevity in reproduc-tion changes within four parities.The identification of parity-associated,pregnancy-related,and reproductive performance-correlated bacteria provides the foundation for targeted microbiome modulation to improve animal production. 展开更多
关键词 LONGEVITY Parity Rectal microbiome Reproductive performance SOWS Vaginal microbiome
在线阅读 下载PDF
Efficient Reduction of Carrier Concentration in SnTe:The Case of Gd Doping 被引量:1
13
作者 Siqi Lin Shiyun Wang +4 位作者 Yanjiao Li Zhenyu Lai Xiaotang Yang Xinyu Lu Min Jin 《Acta Metallurgica Sinica(English Letters)》 2025年第5期859-868,共10页
Lead-free SnTe with naturally non-stoichiometric vacancies has a limited thermoelectric performance due to a deviated carrier concentration from the optimum.In this paper,we experimentally demonstrated that Gd with+3 ... Lead-free SnTe with naturally non-stoichiometric vacancies has a limited thermoelectric performance due to a deviated carrier concentration from the optimum.In this paper,we experimentally demonstrated that Gd with+3 valence state as a novel n-type dopant is an effective solution for reducing carrier concentration in SnTe.A lowest value of 7.6×10^(18) cm^(−3) has been achieved.Yet with the involvement of Gd doping,the slightly modified band structure requires a further Sndeficiency compensation to enhance the overall figure of merit zT.As a consequence,in the specific sample Sn_(0.91)Gd_(0.07)Te,we successfully achieved a low lattice thermal conductivity of 0.8 W/(m K)due to the high doping level and an improved zT approaching 0.8 at 850 K. 展开更多
关键词 SnTe Band engineering SOLUBILITY Thermoelectric performance
原文传递
Improvement of Cold Recycled Mixture Performance Based on Improved Density Test Method and RAP Characteristics
14
作者 HAN Zhanchuang PANG Yafeng LIN Hongwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期79-87,共9页
The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were... The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM. 展开更多
关键词 RAP volume parameters high-temperature performance low-temperature performance water stability
原文传递
Flexural Performance of UHPC-Reinforced Concrete T-Beams:Experimental and Numerical Investigations 被引量:1
15
作者 Guangqing Xiao Xilong Chen +2 位作者 Lihai Xu Feilong Kuang Shaohua He 《Structural Durability & Health Monitoring》 2025年第5期1167-1181,共15页
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated... This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders. 展开更多
关键词 UHPC thin layer T-BEAM REINFORCEMENT bending performance numerical simulation
在线阅读 下载PDF
Preparation of spherical HMX@PDA-based PBX by co-axial droplet microfluidic technology:Enhancing the interfacial effect and safety performance of composite microspheres 被引量:1
16
作者 Yunyan Guo Yi Liu +6 位作者 Jiani Xie Jiawei Li Fan Wang Jinshan Lei Chongwei An Zhongliang Ma Bidong Wu 《Defence Technology(防务技术)》 2025年第3期73-83,共11页
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ... Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications. 展开更多
关键词 Droplet microfluidic technology Interfacial reinforcement Safety performance Surface modification POLYDOPAMINE HMX
在线阅读 下载PDF
Artificial Intelligence Empowers Solid‑State Batteries for Material Screening and Performance Evaluation 被引量:1
17
作者 Sheng Wang Jincheng Liu +5 位作者 Xiaopan Song Huajian Xu Yang Gu Junyu Fan Bin Sun Linwei Yu 《Nano-Micro Letters》 2025年第11期599-629,共31页
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state b... Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration. 展开更多
关键词 Solid-state batteries Artificial intelligence Deep learning Material screening Performance evaluation
在线阅读 下载PDF
Novel entropy-stabilized spinel materials and their potential application in high-temperature industry:[(Mg_(x)Zn_((1-x)/2)Cu_((1-x)/2))(Al_(0.9)Fe_(0.1))_(2)O_(4)](x=0.5,0.6,0.7,and 0.8) 被引量:1
18
作者 Bo-Kang Li Lv-Ping Fu +2 位作者 Hua-Zhi Gu Ao Huang Shuang Yang 《Rare Metals》 2025年第8期5844-5858,共15页
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f... High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃. 展开更多
关键词 Entropy-stabilized spinel Thermal conductivity High-temperature performance Configurational entropy
原文传递
Modifying hydrogen storage properties of the RE−Mg-based alloys with minor Sc addition 被引量:1
19
作者 Hanfeng Sun Peng Sheng +3 位作者 Jun Li Shihai Guo Qilu Ge Yanghuan Zhang 《Journal of Magnesium and Alloys》 2025年第7期3306-3322,共17页
To address the challenges posed by high reaction temperatures and the slow kinetics of Mg-based alloys with high hydrogen storage density,Mg−RE−TM(RE=rare earth,TM=metallic element)alloys have been extensively researc... To address the challenges posed by high reaction temperatures and the slow kinetics of Mg-based alloys with high hydrogen storage density,Mg−RE−TM(RE=rare earth,TM=metallic element)alloys have been extensively researched and hold great promise.In this study,a series of Mg−RE−TM based Mg_(90)Y_(2)Ce_(2)Ni_(3)Al_(3-x)Sc_(x)(x=0,0.3,0.6,0.9,1.2)alloys were prepared.The addition of Sc element has been found to enhance the activation and kinetic properties of the alloy.Compared with the significant differences in the first four dehydrogenation curves of the Sc0 sample,the first activated dehydrogenation curve of the Sc1.2 alloy overlaps with the fully activated dehydrogenation curve.The dehydrogenation activation energy decreased from 96.56 kJ/mol in the Sc0 alloy to 63.69 kJ/mol in the Sc0.9 alloy.Through analysis of the microstructure,phase composition,and hydrogen absorption and desorption kinetics of the alloy,the mechanisms for improving the hydrogen storage properties of the alloy were elucidated.The nucleation-growth-impingement Avrami model was employed to accurately simulate the hydrogen storage kinetics.The results showed that stage II was prolonged and accelerated at high temperature,and the growth rate and hydrogen storage of stage I were increased at low temperature in hydrogen absorption.Microstructure analysis revealed the presence of Mg,CeMg_(12),Mg_(47)Y,and YNi_(2)Al_(3) phases in the Sc0 sample.Upon the addition of Sc element,a new phase,ScNiAl,was formed,and the coarse grain size of the main phase was significantly refined.This refinement provides faster diffusion channels for hydrogen atoms,accelerating the phase transition between Mg alloys and hydrides.The microstructure changes explain the improved activation properties,effective hydrogen absorption and desorption capacity,and kinetic properties of the Mg-based samples. 展开更多
关键词 Mg-based alloys Hydrogen storage performance Sc element Kinetics
在线阅读 下载PDF
New strategy for Mg-air battery voltage-efficiency synergy by engineering protective film with cation vacancies on Mg anode surface 被引量:1
20
作者 Yuying He Qianyu Wang +6 位作者 Jinghuai Zhang Lele Wang Shujuan Liu Zehua Li Zhen Wei Hao Dong Xiaobo Zhang 《Journal of Materials Science & Technology》 2025年第10期24-41,共18页
Although the Mg-air battery with high theoretical energy density is desirable for the energy supply of marine engineering equipment,its applications remain limited due to the low actual discharge voltage and inferior ... Although the Mg-air battery with high theoretical energy density is desirable for the energy supply of marine engineering equipment,its applications remain limited due to the low actual discharge voltage and inferior Mg anode utilization rate.In addition to the microstructure of Mg alloy anodes,the properties of discharge product films are of great importance to the discharge performance.Herein,the discharge behaviors of Mg-Y-Zn alloys are first studied mainly from the perspective of film properties.Through contrastive analysis,it is found that the sufficient Y^(3+) produced during the discharge process can substitute Mg^(2+) in Mg(OH)_(2) to introduce effective cation vacancies.The Mg-Y-Zn anode with profuse cation vacancies in the product film shows a synergy of potential and efficiency,and this can be attributed to an increase in the migration pathway for Mg^(2+),reducing the diffusion over-potential caused by the protective product film.This study is expected to provide a new strategy from the perspective of cation vacancy design of discharge film for developing high-performance Mg-air batteries. 展开更多
关键词 Mg alloy Mg-air battery Product film Cation vacancy Discharge performance
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部