期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Research on the Design and Structural Performance of Customized Building Components Based on 3D Printing Technology
1
作者 Zijiang Huang 《Journal of World Architecture》 2025年第5期51-57,共7页
Additive manufacturing,commonly known as 3D printing,is transitioning from prototyping to a viable construction technology,enabling unprecedented geometric freedom and material efficiency.This paper focuses on the des... Additive manufacturing,commonly known as 3D printing,is transitioning from prototyping to a viable construction technology,enabling unprecedented geometric freedom and material efficiency.This paper focuses on the design,manufacturing,and structural performance of customized,non-standard building components fabricated through concrete 3D printing.It investigates the interplay between computational design tools(e.g.,topology optimization,generative design)and the constraints and opportunities of the extrusion-based 3D printing process.The mechanical properties of printed concrete,particularly the anisotropic behavior due to layer-by-layer deposition,are critically analyzed.A series of mechanical tests on printed specimens(compression,flexural,and inter-layer shear)is presented and compared with cast-in-place concrete.The research demonstrates that through intelligent design that aligns with the printing path and material properties,3D printed components can achieve superior strength-to-weight ratios and novel functional integration(e.g.,internal cooling channels).This work provides valuable insights for architects and engineers seeking to leverage 3D printing for creating high-performance,architecturally expressive building elements. 展开更多
关键词 3D concrete printing Additive manufacturing Topology optimization Structural performance
在线阅读 下载PDF
Effect of Molecular Structure on the Performance of Polyacrylic Acid Superplasticizer 被引量:3
2
作者 张荣国 雷家珩 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期245-249,共5页
The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to th... The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, eic, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and perfolxnance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers. 展开更多
关键词 polyacrylic acid superplasticizer cement concrete structure and performance anion surface-active agent molecule structural design
在线阅读 下载PDF
Recent advances in cathode materials for Li-S battery:structure and performance 被引量:7
3
作者 Chao Li Zhen-Bo Wang +1 位作者 Qian Wang Da-Ming Gu 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期365-380,共16页
Li–S battery is one of the most promising candidates for next-generation energy storage technology.However, the rapid capacity fading and low-energy-density limit its large-scale applications. Scholars invest a lot o... Li–S battery is one of the most promising candidates for next-generation energy storage technology.However, the rapid capacity fading and low-energy-density limit its large-scale applications. Scholars invest a lot of effort to introduce new materials. A neglected problem is that reasonable structure is as important as new material. In this review, four kinds of cathode structures were analyzed through morphology and electrochemical properties. The relationship between structures and properties was elaborated through reaction mechanism. The advantages and disadvantages of each structure were discussed. We hope the summary and discussion provide inspiration for structure design in Li–S battery cathode materials. 展开更多
关键词 Li–S Cathode structure performance
原文传递
Design strategies and structure‐performance relationships of heterogeneous catalysts for selective hydrogenation of 1,3‐butadiene 被引量:2
4
作者 Mengru Wang Yi Wang +2 位作者 Xiaoling Mou Ronghe Lin Yunjie Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1017-1041,共25页
Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while... Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while avoiding over‐hydrogenating valuable olefins.In addition to the great industrial relevance,this demanding selectivity pattern renders 1,3‐butadiene hydrogenation a widely used model reaction to discriminate selective hydrogenation catalysts in academia.Nonetheless,critical reviews on the catalyst development are extremely lacking in literature.In this review,we aim to provide the reader an in‐depth overview of different catalyst families,particularly the precious metal‐based monometallic catalysts(Pd,Pt,and Au),developed in the last half century.The emphasis is placed on the development of new strategies to design high‐performance architectures,the establishment of structure‐performance relationships,and the reaction and deactivation mechanisms.Thrilling directions for future optimization of catalyst formulations and engineering aspect are also provided. 展开更多
关键词 1 3‐Butadiene Catalyst design Selective hydrogenation structureperformance relationship Reaction and deactivation mechanism
在线阅读 下载PDF
Health diagnosis of ultrahigh arch dam performance using heterogeneous spatial panel vector model 被引量:1
5
作者 Er-feng Zhao Xin Li Chong-shi Gu 《Water Science and Engineering》 EI CAS CSCD 2024年第2期177-186,共10页
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ... Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures. 展开更多
关键词 Ultrahigh arch dam Structural performance Deformation behavior Diagnosis criterion Panel data model
在线阅读 下载PDF
THE STRUCTURE AND PERFORMANCES OF THE LARGE DIMEMENSION STEEL BALL MADEOF 45 STEEL QUENCHED AFTER FORGING
6
作者 G.L.Huang Department of Materials Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期845-848,共4页
The structure and performances of the large dimension steel ball made of 45 steel quenched after forging have been researched. The experiments indicate that the optimum results can be obtained under proper pro... The structure and performances of the large dimension steel ball made of 45 steel quenched after forging have been researched. The experiments indicate that the optimum results can be obtained under proper processes. 展开更多
关键词 quenched after forging cooling speed structure and performances
在线阅读 下载PDF
Nuclear power plant life extension:How aging affects performance of containments & other structures
7
作者 Robert A Dameron Sun Junling 《Engineering Sciences》 EI 2013年第3期39-52,共14页
This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analys... This paper focuses on how aging can affect performance of safety-related structures in nuclear power plant (NPP). Knowledge and assessment of impacts of aging on structures are essential to plant life extension analysis,especially performance to severe loadings such as loss-of-coolant-accidents or major seismic events. Plant life extension issues are of keen interest in countries (like the United States) which have a large,aging fleet of NPPs. This paper addresses the overlap and relationship of structure aging to severe loading performance,with particular emphasis on containment structures. 展开更多
关键词 NPP structure performance plant life extension finite element analysis corrosion CONTAINMENT severe accident seismic event
在线阅读 下载PDF
Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene
8
作者 周详 陈骥 +1 位作者 顾林 缪灵 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期99-101,共3页
We study the stability and performance of Li absorption on the composite structure (B80 C72) of boron fullerene and graphene by first-principles calculations. Our results show that the Li storage capacity of the com... We study the stability and performance of Li absorption on the composite structure (B80 C72) of boron fullerene and graphene by first-principles calculations. Our results show that the Li storage capacity of the composite structure is estimated to be at least Li54B80C72, which is steady with improved dispersibility and electronic conductivity. The composite structure could have the potential application as the anode material of Li-ion batteries with high Li storage capacity and great mechanical property. 展开更多
关键词 Li Storage performance for the Composite structure Of Graphene and Boron Fullerene
原文传递
Seismic Behavior of Squat Reinforced Concrete Shear Walls:A State-of-the-Art Review
9
作者 Ahed Habib Zaid A.Al-Sadoon +4 位作者 Murat Saatcioglu Ausamah Al Houri Mohamed Maalej Salah Al-Toubat Mazen Shrif 《Structural Durability & Health Monitoring》 2025年第3期417-439,共23页
Squat reinforced concrete(RC)shear walls are essential structural elements in low-rise buildings,valued for their high strength and stiffness.However,research on their seismic behavior remains limited,as most studies ... Squat reinforced concrete(RC)shear walls are essential structural elements in low-rise buildings,valued for their high strength and stiffness.However,research on their seismic behavior remains limited,as most studies focus on tall,slender walls,which exhibit distinct failure mechanisms and deformation characteristics.This study addresses this gap by conducting an extensive review of existing research on the seismic performance of squat RC shear walls.Experimental studies,analytical models,and numerical simulations are examined to provide insights into key factors affecting wall behavior during seismic events,including material properties,wall geometry,reinforcement detailing,and loading conditions.The review aims to support safer design practices by identifying current knowledge gaps and offering guidance on areas needing further investigation.The findings are expected to aid researchers and practitioners in refining seismic design codes,ultimately contributing to the development of more resilient squat RC shear walls for earthquake-prone regions.This research underscores the importance of improving structural resilience to enhance the safety and durability of buildings. 展开更多
关键词 Seismic behavior squat shear walls reinforced concrete earthquake resilience structural performance
在线阅读 下载PDF
Extraction properties of diglycolamide for rare earth:Contribution of N-substituents
10
作者 Xiujing Peng Miaomiao Zhang +5 位作者 Jingjing Yin Heng Zhao Jianhui Su Yu Cui Xuchuan Jiang Guoxin Sun 《Journal of Rare Earths》 2025年第4期815-821,I0006,共8页
A successful extraction process relies heavily on an excellent extractant structure.The theory of extractant structure and extraction performance is still insufficient to guide the design of new extractants,despite ex... A successful extraction process relies heavily on an excellent extractant structure.The theory of extractant structure and extraction performance is still insufficient to guide the design of new extractants,despite extensive research into extractants.However,diglycolamide extractants have demonstrated certain advantages in nuclear fuel reprocessing and rare earth extraction and separation.This paper focuses on the synthesis of 13 structurally serially changed extractants.There is a good connection between the extraction performance and the energy consumption of the carbonyl conformation torsion of the extractant with symmetrical straight-chain alkyl substituents.The extraction capacity of extractant decreases with the increase of alkyl chain length.The methyl substituent extractant shows higher extractability than the other.The steric effect of the alkyl chain with more than two carbons is not significantly different.The relationship between the structure and performance of extractants was systematically studied by the combination of theoretical calculations and experimental data to investigate the effects of symmetric,asymmetric and branched N-substituents on extraction performance. 展开更多
关键词 N-substituents structure and performance Diglycolamide extractants EXTRACTION Rare earths
原文传递
Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces 被引量:15
11
作者 T.Zhang H.W.Deng +6 位作者 Z.M.Xie R.Liu J.F.Yang C.S.Liu X.P.Wang Q.F.Fang Y.Xiong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第17期29-62,共34页
Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applicati... Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed. 展开更多
关键词 Interface controlling Designing and manufacturing Refractory alloys structure and performance
原文传递
Structural Performance Evaluation Procedure for Large Flexible Airship of HALE Stratospheric Platform Conception 被引量:9
12
作者 陈务军 肖微微 +3 位作者 Bernd Krplin Andreas KunzeInst.of Static and Dynamic for Aerospace Structures Univ.of Stuttgart Germany 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期293-300,共8页
Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to... Basic loads applied on the airship envelope were analyzed.The resultant forces,the static bending moment and the dynamic bending moment were formulated.Based on classic linear elastic membrane theory,the procedures to calculate the minimum pressure were proposed for sufficient rigidity evaluation.The limit load capacity was further investigated,and the related formula were developed.Finally,the stress and internal forces analysis was carried out for cylindrical and non-cylindrical approximations of envelope hull of airship.The present research is very valuable to the overall preliminary design of airship and further research. 展开更多
关键词 AIRSHIP stratospheric platform minimum pressure structural performance
在线阅读 下载PDF
Initial pre-stress finding procedure and structural performance research for Levy cable dome based on linear adjustment theory 被引量:4
13
作者 ZHANG Li-mei CHEN Wu-jun DONG Shi-lin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1366-1372,共7页
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here... The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome. 展开更多
关键词 Linear adjustment theory Cable-strut structure Initial pre-stress Levy cable dome Structural performances analysis
在线阅读 下载PDF
Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites 被引量:4
14
作者 XU Gang HE Xingyang HE Yabo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1186-1192,共7页
Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechan... Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechanical performance and pore structure of cement-based systems. Analysis was done on the variations of the porosity, pore size, and pore volume distribution with the curing age and replacement content, and the fractal dimensions of pore surfaces. The results suggested that systems with both supplementary materials had lower early strengths than pure cement, but could generally surpass pure cement paste after 90 d; higher SL content was particularly helpful for boosting the late strengths. The addition of ST increased the porosities and mean pore sizes at each age, and both increased with ST content; SL was helpful for decreasing the system's late porosity(especially harmless pores below 20 nm); The lowest porosity and mean pore size were obtained with 20% SL. Both systems had notably fractal characteristics on pore surfaces, with ST systems showing the highest dimensions at 10% ST, and SL systems at 20% SL. Compressive strength displayed a significant linear increase with fractal dimension. 展开更多
关键词 steel slag granulated blast-furnace slag mechanical performance pore structure fractal dimension
原文传递
Force and Flow Structure of an Airfoil Performing Some Unsteady Motions at Small Reynolds Number 被引量:9
15
作者 Sun Mao Hossein Hamdani (Institute of Fluid Mechanics,Beijing University of Aeronautics & Astronautics) 《空气动力学学报》 CSCD 北大核心 2000年第z1期96-102,共7页
关键词 Flow Re Force and Flow structure of an Airfoil Performing Some Unsteady Motions at Small Reynolds Number
在线阅读 下载PDF
Structural Performance and Characterization of Polyimide Doped Activated Carbon Fibers for Mercury Adsorption 被引量:2
16
作者 刁永发 郝卫辉 +2 位作者 邹钺 余婉璇 张润圃 《Journal of Donghua University(English Edition)》 EI CAS 2011年第3期291-294,共4页
Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used i... Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used in the non-woven fabric for bag filter, was intermingled with polyacrylonitrile-based ACF (PAN-ACF) in the weight ratio of 1∶1 in order to make the doped ACF with P84 (doped-ACF-P84). Then the doped-ACF-P84 fibers were modified by HNO3 solution. The structure and morphology of doped-ACF-P84 were characterized and compared with those of ACF and doped-ACF-P84 modified by HNO3solution. The results show that the modified doped-ACF-P84 fibers have almost the same pore structure and specific surface area comparing with the original one. However, contrasted with the original PAN-ACF, the doped-ACF-P84 fibers modified by HNO3 solution have more oxygen-containing groups used for mercury removal. In particular, they have more lactone and carboxyl groups. 展开更多
关键词 polyimide doped activated carbon fibers MODIFICATION structural performance CHARACTERIZATION
在线阅读 下载PDF
Structure and electrochemical properties of LaMgNi4-xCox(x=0-0.8)hydrogen storage electrode alloys 被引量:6
17
作者 Tai Yang Ting-Ting Zhai +3 位作者 Ze-Ming Yuan Wen-Gang Bu Yan Qi Yang-Huan Zhang 《Rare Metals》 SCIE EI CAS CSCD 2018年第3期249-256,共8页
LaMgNi(4-x)Cox(x = 0-0.8) electrode alloys used for MH/Ni batteries were prepared by induction melting. The structures and electrochemical hydrogen storage properties of the alloys were investigated in detail.X-ra... LaMgNi(4-x)Cox(x = 0-0.8) electrode alloys used for MH/Ni batteries were prepared by induction melting. The structures and electrochemical hydrogen storage properties of the alloys were investigated in detail.X-ray diffraction(XRD) and scanning electron microscopy(SEM) analysis show that LaMgNi4 phase and LaNi5 phase are obtained. The lattice parameters of the two phases increase first and then decrease with Co content increasing.The electrochemical properties of the alloy electrodes were measured by means of simulated battery tests. Results show that the addition of Co does not change the discharge voltage plateau of the alloy electrodes. However, the maximum discharge capacity increases from 319.9 mAh·g^-1(x = 0)to 347.5 mAh·g^-1(x = 0.4) and then decreases to331.7 mAh·g^-1(x = 0.8). The effects of Co content on electrochemical kinetics of the alloy electrodes were also performed. The high rate dischargeability(HRD) first increases and then decreases with Co content increasing and reaches the maximum value(95.0 %) when x = 0.4. Test results of the electrochemical impedance spectra(EIS),potentiodynamic polarization curves and constant potential step measurements of the alloy electrodes all demonstrate that when Co content is 0.4 at%, the alloy exhibits the best comprehensive electrochemical properties. 展开更多
关键词 Hydrogen storage alloy Element substitution Phase structure Electrochemical performances Kinetics
原文传递
Microscopic properties and sealing performance of new gas drainage drilling sealing material 被引量:5
18
作者 Zhai Cheng Yu Xu +2 位作者 Ni Guanhua Li Min Hao Zhiyong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期474-479,共6页
The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentrat... The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly. 展开更多
关键词 Drilling sealing material Microcosmic structure Gas drainage Sealing performance
在线阅读 下载PDF
Electrochemical performance of La_(2–x)Sm_xMg_(16)Ni+200 wt.% Ni(x=0, 0.1, 0.2, 0.3, 0.4) alloys 被引量:3
19
作者 冯佃臣 王西涛 张羊换 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第7期683-689,共7页
Nanocrystalline and amorphous La_(2–x)Sm_xMg_(16)Ni+200wt.% Ni(x=0, 0.1, 0.2, 0.3, 0.4) alloys were prepared by mechanical milling technology. The structures of as-cast and milled alloys were investigated by X... Nanocrystalline and amorphous La_(2–x)Sm_xMg_(16)Ni+200wt.% Ni(x=0, 0.1, 0.2, 0.3, 0.4) alloys were prepared by mechanical milling technology. The structures of as-cast and milled alloys were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). Electrochemical performance of the alloy was studied by using an automatic galvanostatic system. The electrochemical impedance spectra(EIS) and Tafel polarization curves were measured by electrochemical workstation. The results indicated that the structures of the as-cast and milled alloys presented a multiphase structure with nanocrystalline and amorphous phase, moreover, transforming from nanocrystalline to amorphous phase with Sm doping. With the increase of Sm content, the maximum discharge capacity of the alloy was decreased from 922.6 to 649.1 m Ah/g, the high-rate discharge ability(HRD) was decreased, the cycle stability was strengthened, and the alloy exhibited excellent electrochemical kinetics. In addition, the charge-transfer resistance(R_(ct)) of alloy was lessened from 0.05874 to 0.02953 ? and the limiting current density(I_L) was descended from 2.08366 to 1.04592 A/g with increasing Sm content. 展开更多
关键词 La2Mg17-type alloy Sm doping structure electrochemical performance rare earths
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部