The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen a...The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen and nitrogen led to a decrease in the catalytic performance of chloroaluminate IL.As the water concentration increased to 65 mg·g^(-1),the total selectivity of multi-octylnaphthalene gradually decreased to 42.33%,and the average friction coefficient of the multi-octylnaphthalene base oil gradually increased to 0.201.When the concentration of impurities increased to a critical value,the chloroaluminate IL began to deactivate,leading to a decrease in naphthalene conversion.The critical concentrations for ethanolamine,water,methanol,ether,and diisopentyl sulfide were 33 mg·g^(-1),65 mg·g^(-1),67mg·g^(-1),87 mg·g^(-1),and 123 mg·g^(-1),respectively.Impurities with higher basicity resulted in an earlier onset of chloroaluminate IL deactivation.The changes of Lewis and Brønsted acids in chloroaluminate IL under the influence of impurities were investigated using in situ IR and 27Al NMR spectroscopy.2,6-dimethylpyridine as an indicator could detect the changes of Brønsted acid in chloroaluminate IL better,but the changes of Lewis acid were not obvious because of the overlap between the characteristic peaks.2,6-dichloropyridine as an indicator could exclusively detect the changes of Lewis acid in chloroaluminate IL.With the increase inwater concentration,the Lewis acid in chloroaluminate IL was continuously consumed and converted into Brønsted acid,and the Lewis acid gradually decreased,while the Brønsted acid showed a change of increasing first and then decreasing.展开更多
Triboelectric nanogenerators(TENGs)offer a selfsustaining power solution for marine regions abundant in resources but constrained by energy availability.Since their pioneering use in wave energy harvesting in 2014,nea...Triboelectric nanogenerators(TENGs)offer a selfsustaining power solution for marine regions abundant in resources but constrained by energy availability.Since their pioneering use in wave energy harvesting in 2014,nearly a decade of advancements has yielded nearly thousands of research articles in this domain.Researchers have developed various TENG device structures with diverse functionalities to facilitate their commercial deployment.Nonetheless,there is a gap in comprehensive summaries and performance evaluations of TENG structural designs.This paper delineates six innovative structural designs,focusing on enhancing internal device output and adapting to external environments:high space utilization,hybrid generator,mechanical gain,broadband response,multi-directional operation,and hybrid energy-harvesting systems.We summarize the prevailing trends in device structure design identified by the research community.Furthermore,we conduct a meticulous comparison of the electrical performance of these devices under motorized,simulated wave,and real marine conditions,while also assessing their sustainability in terms of device durability and mechanical robustness.In conclusion,the paper outlines future research avenues and discusses the obstacles encountered in the TENG field.This review aims to offer valuable perspectives for ongoing research and to advance the progress and application of TENG technology.展开更多
Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an...Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.展开更多
We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo ...We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo and no-intervention conditions.The study found that while IPC demonstrated superior effects over the no-intervention group in certain metrics(e.g.,time to exhaustion),its performance did not significantly surpass that of the placebo group.This suggests that the potential benefits of IPC may partially stem from participants’psychological expectations,or placebo effects.The study also highlighted the significant impact of placebo interventions on athletic performance,emphasizing the importance of distinguishing between placebo and no-intervention conditions in experimental designs.展开更多
In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the i...In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.展开更多
We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic ...We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic performance.2Their attention to methodological details,particularly concerning the inclusion and timing of warm-up protocols across studies,is commendable and contributes meaningfully to the ongoing refinement of IPC research in sports science.展开更多
A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modifie...A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths.展开更多
Due to uncertainties in seismic pipeline damage and post-earthquake recovery processes,probabilistic characteristics such as mean value,standard deviation,probability density function,and cumulative distribution funct...Due to uncertainties in seismic pipeline damage and post-earthquake recovery processes,probabilistic characteristics such as mean value,standard deviation,probability density function,and cumulative distribution function provide valuable information.In this study,a simulation-based framework to evaluate these probabilistic characteristics in water distribution systems(WDSs)during post-earthquake recovery is developed.The framework first calculates pipeline failure probabilities using seismic fragility models and then generates damage samples through quasi-Monte Carlo simulations with Sobol’s sequence for faster convergence.System performance is assessed using a hydraulic model,and recovery simulations produce time-varying performance curves,where the dynamic importance of unrepaired damage determines repair sequences.Finally,the probabilistic characteristics of seismic performance indicators,resilience index,resilience loss,and recovery time are evaluated.The framework is applied in two benchmark WDSs with different layouts to investigate the probabilistic characteristics of their seismic performance and resilience.Application results show that the cumulative distribution function reveals the variations in resilience indicators for different exceedance probabilities,and there are dramatic differences among the recovery times corresponding to the system performance recovery targets of 80%,90%,and 100%.展开更多
This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrate...This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.展开更多
This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobi...This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
The importance of cybersecurity in contemporary society cannot be inflated,given the substantial impact of networks on various aspects of daily life.Traditional cybersecurity measures,such as anti-virus software and f...The importance of cybersecurity in contemporary society cannot be inflated,given the substantial impact of networks on various aspects of daily life.Traditional cybersecurity measures,such as anti-virus software and firewalls,safeguard networks against potential threats.In network security,using Intrusion Detection Systems(IDSs)is vital for effectively monitoring the various software and hardware components inside a given network.However,they may encounter difficulties when it comes to detecting solitary attacks.Machine Learning(ML)models are implemented in intrusion detection widely because of the high accuracy.The present work aims to assess the performance of machine learning algorithms in the context of intrusion detection,providing valuable insights into their efficacy and potential for enhancing cybersecurity measures.The main objective is to compare the performance of the well-knownML models using the UNSW-NB15 dataset.The performance of the models is discussed in detail with a comparison using evaluation metrics and computational performance.展开更多
With the increased accessibility of global trade information,transaction fraud has become a major worry in global banking and commerce security.The incidence and magnitude of transaction fraud are increasing daily,res...With the increased accessibility of global trade information,transaction fraud has become a major worry in global banking and commerce security.The incidence and magnitude of transaction fraud are increasing daily,resulting in significant financial losses for both customers and financial professionals.With improvements in data mining and machine learning in computer science,the capacity to detect transaction fraud is becoming increasingly attainable.The primary goal of this research is to undertake a comparative examination of cutting-edge machine-learning algorithms developed to detect credit card fraud.The research looks at the efficacy of these machine learning algorithms using a publicly available dataset of credit card transactions performed by European cardholders in 2023,comprising around 550,000 records.The study uses this dataset to assess the performance of well-established machine learning models,measuring their accuracy,recall,and F1 score.In addition,the study includes a confusion matrix for all models to aid in evaluation and training time duration.Machin learning models,including Logistic regression,random forest,extra trees,and LGBM,achieve high accuracy and precision in the credit card fraud detection dataset,with a reported accuracy,recall,and F1 score of 1.00 for both classes.展开更多
In order to improve the performance and service life of the Leningrader seal of the Stirling engine piston rod,interference,pre-load and friction coefficient were taken as influencing factors,and the curved surface re...In order to improve the performance and service life of the Leningrader seal of the Stirling engine piston rod,interference,pre-load and friction coefficient were taken as influencing factors,and the curved surface response method was adopted to reduce the contact stress of sealing surface and von Mises stress of the sealing sleeve as the response index,with the optimization goal of reducing wear and extending life.The above three key parameters are analyzed and optimized,the influence of each parameter on the sealing performance and service life is obtained,and the best combination scheme of the three is determined.The results show that the interaction between pre-tightening force and interference fit has the greatest impact on contact stress.The interaction between interference fit and friction coeffi-cient has the most significant effect on von Mises stress.The optimized parameters can reduce the maximum contact stress and maximum von Mises stress of the sealing sleeve by 26.3%and 20.6%,respectively,under a media pressure of 5-9 MPa.Test bench verification shows that the leakage of the optimized sealing device in 12 h is reduced by 0.44 cc·min^(-1)(1 cc=1 cm^(3)).The wear rate of the sealing sleeve is 1.08%before optimization and 0.45%after optimization,indicating that the optimized parameters in this paper are effective.展开更多
Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling ca...Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.展开更多
A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in re...A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.展开更多
Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of s...Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of solutions for this server is therefore growing continuously, these services are becoming more and more complex and expensive, without being able to fulfill the needs of the users. The absence of benchmarks for websites with dynamic content is the major obstacle to research in this area. These users place high demands on the speed of access to information on the Internet. This is why the performance of the web server is critically important. Several factors influence performance, such as server execution speed, network saturation on the internet or intranet, increased response time, and throughputs. By measuring these factors, we propose a performance evaluation strategy for servers that allows us to determine the actual performance of different servers in terms of user satisfaction. Furthermore, we identified performance characteristics such as throughput, resource utilization, and response time of a system through measurement and modeling by simulation. Finally, we present a simple queue model of an Apache web server, which reasonably represents the behavior of a saturated web server using the Simulink model in Matlab (Matrix Laboratory) and also incorporates sporadic incoming traffic. We obtain server performance metrics such as average response time and throughput through simulations. Compared to other models, our model is conceptually straightforward. The model has been validated through measurements and simulations during the tests that we conducted.展开更多
The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists in correctly classifying patients and treating them accordingly.The utilization of machine learnin...The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists in correctly classifying patients and treating them accordingly.The utilization of machine learning in the medical domain has witnessed a notable surge due to its ability to discern patterns from vast amounts of data.Machine learning algorithms that can categorize cases of cardiovascular illness may help doctors reduce the number of wrong diagnoses.This research investigates the efficacy of different machine learning algorithms in predicting cardiovascular disease in accordance with risk factors.This study utilizes a variety of machine learning models,including Logistic Regression,Random Forest,Decision Tree,Extra Trees classifier,Support Vector Machine(SVM),XGBoost(XGB),Light Gradient Boosting Machine(LGBM),GaussianNB,and Multilayer Perceptron(MLP).The machine learning models are applied to a concrete dataset acquired from Kaggle.The models underwent training using a dataset that was partitioned into an 80:20 ratio.Machine learning model evaluation involves the utilization of performance measurements such as Accuracy,Precision,Recall,and ROC curves.An exhaustive evaluation is carried out to gauge the efficacy of the models.展开更多
In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has be...In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has become a focus of research in the field of computer vision.AI dynamic recognition technology has become one of the key technologies to address this issue due to its powerful data processing capabilities and intelligent recognition functions.Based on this,this paper first elaborates on the development of intelligent video AI dynamic recognition technology,then proposes several optimization strategies for intelligent video AI dynamic recognition technology,and finally analyzes the performance of intelligent video AI dynamic recognition technology for reference.展开更多
The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in...The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in the cooling mode and a higher evaporating temperature in the heating mode,and the ground heat exchanger(GHE)in the DX GSHP has a low thermal resistance.Therefore,the coefficient of performance(COP)of the DX GSHP is higher than that of the GSHP.In addition,the system performance of the DX GSHP system is higher than that of the conventional GSHP system because there are no secondary solution loops and water circulating pumps in the DX GSHP system.The experimental energy performance of the DX GSHP system is also investigated based on the actual operational data.The tested DX GSHP system is installed in Xiangtan,China.The U-vertical GHE of the DX GSHP is buried in a water well.The length and the outside nominal diameter of the GHE are 42 m and 12.7 mm,respectively.The experimental results show that the maximum(COP)and the average COP of the DX GSHP system in the heating mode are 5.95 and 4.72,respectively.展开更多
基金financial support of the Scientific Research Funds of Huaqiao University (605-50Y17073)
文摘The effects of the structure and concentration of impurities on the alkylation of naphthalene with 1-octene catalyzed by chloroaluminate ionic liquid(IL)were investigated.The presence of impurities containing oxygen and nitrogen led to a decrease in the catalytic performance of chloroaluminate IL.As the water concentration increased to 65 mg·g^(-1),the total selectivity of multi-octylnaphthalene gradually decreased to 42.33%,and the average friction coefficient of the multi-octylnaphthalene base oil gradually increased to 0.201.When the concentration of impurities increased to a critical value,the chloroaluminate IL began to deactivate,leading to a decrease in naphthalene conversion.The critical concentrations for ethanolamine,water,methanol,ether,and diisopentyl sulfide were 33 mg·g^(-1),65 mg·g^(-1),67mg·g^(-1),87 mg·g^(-1),and 123 mg·g^(-1),respectively.Impurities with higher basicity resulted in an earlier onset of chloroaluminate IL deactivation.The changes of Lewis and Brønsted acids in chloroaluminate IL under the influence of impurities were investigated using in situ IR and 27Al NMR spectroscopy.2,6-dimethylpyridine as an indicator could detect the changes of Brønsted acid in chloroaluminate IL better,but the changes of Lewis acid were not obvious because of the overlap between the characteristic peaks.2,6-dichloropyridine as an indicator could exclusively detect the changes of Lewis acid in chloroaluminate IL.With the increase inwater concentration,the Lewis acid in chloroaluminate IL was continuously consumed and converted into Brønsted acid,and the Lewis acid gradually decreased,while the Brønsted acid showed a change of increasing first and then decreasing.
基金supported by the National Key R&D Project from Ministry of Science and Technology,China(2021YFA1201603)National Natural Science Foundation of China(52073032 and 52192611)the Fundamental Research Funds for the Central Universities.
文摘Triboelectric nanogenerators(TENGs)offer a selfsustaining power solution for marine regions abundant in resources but constrained by energy availability.Since their pioneering use in wave energy harvesting in 2014,nearly a decade of advancements has yielded nearly thousands of research articles in this domain.Researchers have developed various TENG device structures with diverse functionalities to facilitate their commercial deployment.Nonetheless,there is a gap in comprehensive summaries and performance evaluations of TENG structural designs.This paper delineates six innovative structural designs,focusing on enhancing internal device output and adapting to external environments:high space utilization,hybrid generator,mechanical gain,broadband response,multi-directional operation,and hybrid energy-harvesting systems.We summarize the prevailing trends in device structure design identified by the research community.Furthermore,we conduct a meticulous comparison of the electrical performance of these devices under motorized,simulated wave,and real marine conditions,while also assessing their sustainability in terms of device durability and mechanical robustness.In conclusion,the paper outlines future research avenues and discusses the obstacles encountered in the TENG field.This review aims to offer valuable perspectives for ongoing research and to advance the progress and application of TENG technology.
基金supported by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.Q2023J012).
文摘Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China.
文摘We highly commend Dr Souza et al.1for their systematic review research.The authors conducted a detailed investigation into the effects of ischemic preconditioning(IPC)on athletic performance,comparing it with placebo and no-intervention conditions.The study found that while IPC demonstrated superior effects over the no-intervention group in certain metrics(e.g.,time to exhaustion),its performance did not significantly surpass that of the placebo group.This suggests that the potential benefits of IPC may partially stem from participants’psychological expectations,or placebo effects.The study also highlighted the significant impact of placebo interventions on athletic performance,emphasizing the importance of distinguishing between placebo and no-intervention conditions in experimental designs.
基金supported by the National Fund for Distinguished Young Scholars(52025072)the National Natural Science Foundation of China(52177012)the Foundation of National Key Laboratory of Science and Technology(614221722051301).
文摘In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.
文摘We sincerely thank the authors of the commentary1 for their thoughtful analysis and constructive critique of our systematic review on ischemic preconditioning(IPC)and placebo effects in exercise capacity and athletic performance.2Their attention to methodological details,particularly concerning the inclusion and timing of warm-up protocols across studies,is commendable and contributes meaningfully to the ongoing refinement of IPC research in sports science.
基金Science and Technology Plan Project of Xizang Autonomous Region,China under Grant No.XZ202501YD0007。
文摘A novel porous shock absorption layer is put forward in this study, and the shock absorption performance of the porous shock absorption layer is evaluated based on three-dimensional pseudo-static analysis. The modified reaction acceleration method is adopted and validated in the three-dimensional model. Seven ground motions are selected and the peak ground acceleration is adjusted to 0.2 g, 0.4 g and 0.6 g. The impact of the void ratio and thickness of the porous shock absorption layer is studied, while the surrounding rock grade and tunnel depth are also investigated. The numerical results show that the porous shock absorption layer has good shock absorption performance and can effectively reduce the maximum internal force of the secondary lining, but it cannot reduce the maximum horizontal relative displacement of the secondary lining. The circumferential rubber strip in the porous shock absorption layer will reduce shock absorption performance. The results of parameter analysis indicate that the shock absorption performance of the porous shock absorption layer increases with the increase of the void ratio and thickness, and it has good shock absorption performance under different surrounding rock grades and tunnel depths.
基金National Key R&D Program of China under Grant No.2022YFC3003600National Natural Science Foundation of China(NSFC)under Grant No.51978023。
文摘Due to uncertainties in seismic pipeline damage and post-earthquake recovery processes,probabilistic characteristics such as mean value,standard deviation,probability density function,and cumulative distribution function provide valuable information.In this study,a simulation-based framework to evaluate these probabilistic characteristics in water distribution systems(WDSs)during post-earthquake recovery is developed.The framework first calculates pipeline failure probabilities using seismic fragility models and then generates damage samples through quasi-Monte Carlo simulations with Sobol’s sequence for faster convergence.System performance is assessed using a hydraulic model,and recovery simulations produce time-varying performance curves,where the dynamic importance of unrepaired damage determines repair sequences.Finally,the probabilistic characteristics of seismic performance indicators,resilience index,resilience loss,and recovery time are evaluated.The framework is applied in two benchmark WDSs with different layouts to investigate the probabilistic characteristics of their seismic performance and resilience.Application results show that the cumulative distribution function reveals the variations in resilience indicators for different exceedance probabilities,and there are dramatic differences among the recovery times corresponding to the system performance recovery targets of 80%,90%,and 100%.
基金supported in part by the National Natural Science Foundation of China under Grant U21B2014,Grant 92267202,and Grant 62271081.
文摘This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.
基金supported by the National Natural Science Foundation of China(No.12072304).
文摘This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
文摘The importance of cybersecurity in contemporary society cannot be inflated,given the substantial impact of networks on various aspects of daily life.Traditional cybersecurity measures,such as anti-virus software and firewalls,safeguard networks against potential threats.In network security,using Intrusion Detection Systems(IDSs)is vital for effectively monitoring the various software and hardware components inside a given network.However,they may encounter difficulties when it comes to detecting solitary attacks.Machine Learning(ML)models are implemented in intrusion detection widely because of the high accuracy.The present work aims to assess the performance of machine learning algorithms in the context of intrusion detection,providing valuable insights into their efficacy and potential for enhancing cybersecurity measures.The main objective is to compare the performance of the well-knownML models using the UNSW-NB15 dataset.The performance of the models is discussed in detail with a comparison using evaluation metrics and computational performance.
文摘With the increased accessibility of global trade information,transaction fraud has become a major worry in global banking and commerce security.The incidence and magnitude of transaction fraud are increasing daily,resulting in significant financial losses for both customers and financial professionals.With improvements in data mining and machine learning in computer science,the capacity to detect transaction fraud is becoming increasingly attainable.The primary goal of this research is to undertake a comparative examination of cutting-edge machine-learning algorithms developed to detect credit card fraud.The research looks at the efficacy of these machine learning algorithms using a publicly available dataset of credit card transactions performed by European cardholders in 2023,comprising around 550,000 records.The study uses this dataset to assess the performance of well-established machine learning models,measuring their accuracy,recall,and F1 score.In addition,the study includes a confusion matrix for all models to aid in evaluation and training time duration.Machin learning models,including Logistic regression,random forest,extra trees,and LGBM,achieve high accuracy and precision in the credit card fraud detection dataset,with a reported accuracy,recall,and F1 score of 1.00 for both classes.
基金Supported by the National Natural Science Foundation of China (51675509)Wenzhou Public Welfare Industrial Technology Project (G20170026).
文摘In order to improve the performance and service life of the Leningrader seal of the Stirling engine piston rod,interference,pre-load and friction coefficient were taken as influencing factors,and the curved surface response method was adopted to reduce the contact stress of sealing surface and von Mises stress of the sealing sleeve as the response index,with the optimization goal of reducing wear and extending life.The above three key parameters are analyzed and optimized,the influence of each parameter on the sealing performance and service life is obtained,and the best combination scheme of the three is determined.The results show that the interaction between pre-tightening force and interference fit has the greatest impact on contact stress.The interaction between interference fit and friction coeffi-cient has the most significant effect on von Mises stress.The optimized parameters can reduce the maximum contact stress and maximum von Mises stress of the sealing sleeve by 26.3%and 20.6%,respectively,under a media pressure of 5-9 MPa.Test bench verification shows that the leakage of the optimized sealing device in 12 h is reduced by 0.44 cc·min^(-1)(1 cc=1 cm^(3)).The wear rate of the sealing sleeve is 1.08%before optimization and 0.45%after optimization,indicating that the optimized parameters in this paper are effective.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20220649)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.23KJB460010)+1 种基金the Key R&D Program of Jiangsu Province(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2143).
文摘Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.
基金Supported by the National Talent Fund of the Ministry of Science and Technology of China(20230240011)China University of Geosciences(Wuhan)Research Fund(162301192687)。
文摘A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.
文摘Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of solutions for this server is therefore growing continuously, these services are becoming more and more complex and expensive, without being able to fulfill the needs of the users. The absence of benchmarks for websites with dynamic content is the major obstacle to research in this area. These users place high demands on the speed of access to information on the Internet. This is why the performance of the web server is critically important. Several factors influence performance, such as server execution speed, network saturation on the internet or intranet, increased response time, and throughputs. By measuring these factors, we propose a performance evaluation strategy for servers that allows us to determine the actual performance of different servers in terms of user satisfaction. Furthermore, we identified performance characteristics such as throughput, resource utilization, and response time of a system through measurement and modeling by simulation. Finally, we present a simple queue model of an Apache web server, which reasonably represents the behavior of a saturated web server using the Simulink model in Matlab (Matrix Laboratory) and also incorporates sporadic incoming traffic. We obtain server performance metrics such as average response time and throughput through simulations. Compared to other models, our model is conceptually straightforward. The model has been validated through measurements and simulations during the tests that we conducted.
文摘The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists in correctly classifying patients and treating them accordingly.The utilization of machine learning in the medical domain has witnessed a notable surge due to its ability to discern patterns from vast amounts of data.Machine learning algorithms that can categorize cases of cardiovascular illness may help doctors reduce the number of wrong diagnoses.This research investigates the efficacy of different machine learning algorithms in predicting cardiovascular disease in accordance with risk factors.This study utilizes a variety of machine learning models,including Logistic Regression,Random Forest,Decision Tree,Extra Trees classifier,Support Vector Machine(SVM),XGBoost(XGB),Light Gradient Boosting Machine(LGBM),GaussianNB,and Multilayer Perceptron(MLP).The machine learning models are applied to a concrete dataset acquired from Kaggle.The models underwent training using a dataset that was partitioned into an 80:20 ratio.Machine learning model evaluation involves the utilization of performance measurements such as Accuracy,Precision,Recall,and ROC curves.An exhaustive evaluation is carried out to gauge the efficacy of the models.
文摘In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has become a focus of research in the field of computer vision.AI dynamic recognition technology has become one of the key technologies to address this issue due to its powerful data processing capabilities and intelligent recognition functions.Based on this,this paper first elaborates on the development of intelligent video AI dynamic recognition technology,then proposes several optimization strategies for intelligent video AI dynamic recognition technology,and finally analyzes the performance of intelligent video AI dynamic recognition technology for reference.
基金The National Key Technologies R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2006BAJ04B04,2006BAJ04A05,2006BAJ04A13)
文摘The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in the cooling mode and a higher evaporating temperature in the heating mode,and the ground heat exchanger(GHE)in the DX GSHP has a low thermal resistance.Therefore,the coefficient of performance(COP)of the DX GSHP is higher than that of the GSHP.In addition,the system performance of the DX GSHP system is higher than that of the conventional GSHP system because there are no secondary solution loops and water circulating pumps in the DX GSHP system.The experimental energy performance of the DX GSHP system is also investigated based on the actual operational data.The tested DX GSHP system is installed in Xiangtan,China.The U-vertical GHE of the DX GSHP is buried in a water well.The length and the outside nominal diameter of the GHE are 42 m and 12.7 mm,respectively.The experimental results show that the maximum(COP)and the average COP of the DX GSHP system in the heating mode are 5.95 and 4.72,respectively.