The prioritization of financial infrastructure construction serves as a crucial guarantee for the high-quality development of small and micro enterprises.However,resolving the financing challenges of small and micro e...The prioritization of financial infrastructure construction serves as a crucial guarantee for the high-quality development of small and micro enterprises.However,resolving the financing challenges of small and micro enterprises is not a task to be accomplished overnight.It necessitates the establishment of a long-term mechanism,the acceleration of financial innovation,the gradual enhancement of the vitality of micro-entities,and the creation of a stable and healthy economic development environment.Therefore,the author first analyzes the current financing situation of small and micro enterprises,as well as the problems they face during the process of financial innovation enabling small and micro enterprises to access financing and solve their financing difficulties,such as insufficient technical support,an imperfect risk control system,incomplete information disclosure,and a lack of credit data.Subsequently,targeted paths for financial innovation are proposed,aiming to offer suggestions for solving the financing problems of small and micro enterprises.展开更多
In view of the series of problems found in the rural collective economic audit in Zhangdian District of Zibo City in the past five years,this study used empirical research methods to deeply analyze the current situati...In view of the series of problems found in the rural collective economic audit in Zhangdian District of Zibo City in the past five years,this study used empirical research methods to deeply analyze the current situation and existing problems of the village collective audit work.On this basis,typical cases were selected for in-depth analysis,the effects of different audit modes were compared,and the reliable paths to improve the efficiency of village collective audit were studied and considered.The results show that the social governance strategy plays a positive role in improving the efficiency of village collective audit.This study is expected to provide a reference for the improvement of village collective audit efficiency,and is of great significance to improve the village collective financial management and promote the improvement of the rural governance system.展开更多
Outer-independent Roman domination on graphs originates from the defensive strategy of Ancient Rome,which is that if any city without an army is attacked,a neighboring city with two armies could mobilize an army to su...Outer-independent Roman domination on graphs originates from the defensive strategy of Ancient Rome,which is that if any city without an army is attacked,a neighboring city with two armies could mobilize an army to support it and any two cities that have no army cannot be adjacent.The outer-independent Roman domination on graphs is an attractive topic in graph theory,and the definition is described as follows.Given a graph G=(V,E),a function f:V(G)→{0,1,2}is an outer-independent Roman dominating function(OIRDF)if f satisfies that every vertex v∈V with f(v)=0 has at least one adjacent vertex u∈N(v)with f(u)=2,where N(v)is the open neighborhood of v,and the set V0={v|f(v)=0}is an independent set.The weight of an OIRDF f is w(f)=∑_(v∈V)f(v).The value of minf w(f)is the outerindependent Roman domination number of G,denoted asγoiR(G).This paper is devoted to the study of the outer-independent Roman domination number of the Cartesian product of paths P_(n)□P_(m).With the help of computer,we find some recursive OIRDFs and then we present an upper bound ofγoiR(P_(n)□P_(m)).Furthermore,we prove the lower bound ofγoiR(P_(n)□P_(m))(n≤3)is equal to the upper bound.Hence,we achieve the exact value ofγoiR(P_(n)□P_(m))for n≤3 and the upper bound ofγoiR(P_(n)□P_(m))for n≥4.展开更多
With the rapid development of private higher education,the construction of counselor teams in private universities has become increasingly important.This paper focuses on outstanding counselors in private universities...With the rapid development of private higher education,the construction of counselor teams in private universities has become increasingly important.This paper focuses on outstanding counselors in private universities,delving into their growth patterns and proposing targeted training paths based on this analysis.By reviewing relevant theories and analyzing case studies of excellent counselors,it is found that outstanding counselors in private universities exhibit stage-specific characteristics during their development,influenced by personal traits,school environment,career progression,and other factors.In terms of training approaches,efforts should be made to improve selection mechanisms,strengthen training systems,provide career development support,and create a positive work atmosphere,all aimed at enhancing the overall quality of the counselor team in private universities and better serving student growth and institutional development.展开更多
To study the energy evolution and failure characteristics of saturated sandstone under unloading conditions,rock unloading tests under different stress paths were conducted.The energy evolution mechanism of the unload...To study the energy evolution and failure characteristics of saturated sandstone under unloading conditions,rock unloading tests under different stress paths were conducted.The energy evolution mechanism of the unloading failure of saturated sandstone was systematically explored from the perspectives of the stress path,the initial confining pressure,and the energy conversion rate.The results show that(1)before the peak stress,the elastic energy increases with an increase in deviatoric stress,while the dissipated energy slowly increases first.After the peak stress,the elastic energy decreases with the decrease of deviatoric stress,and the dissipated energy suddenly increases.The energy release intensity during rock failure is positively correlated with the axial stress.(2)When the initial confining pressure is below a certain threshold,the stress path is the main factor influencing the total energy difference.When the axial stress remains constant and the confining pressure is unloading,the total energy is more sensitive to changes in the confining pressure.When the axial stress remains constant,the compressive deformation ability of the rock cannot be significantly improved by the increase in the initial confining pressure.The initial confining pressure is positively correlated with the rock's energy storage limit.(3)The initial confining pressure increases the energy conversion rate of the rock;the initial confining pressure is positively correlated with the energy conversion rate;and the energy conversion rate has a high confining pressure effect.The increase in the axial stress has a much greater impact on the elastic energy than the confining pressure.(4)When the deviatoric stress is small,the confining pressure mainly plays a protective role.Compared with the case of triaxial compression paths,the rock damage is more severe under unloading paths,and compared with the case of constant axial stress,the rock damage is more severe under increasing axial stress.展开更多
Synergistic reduction of carbon emissions and air pollution is the core means to address the two major strategic tasks of fundamentally improving the ecological environment and the‘Dual-carbon target’.The issue of s...Synergistic reduction of carbon emissions and air pollution is the core means to address the two major strategic tasks of fundamentally improving the ecological environment and the‘Dual-carbon target’.The issue of synergistic reduction at the provincial level needs to be addressed as a matter of urgency.Taking Henan Province,the largest economy in central China,as an example,this study uses environmentally extended input-output analysis and structural path analysis to identify the key sectors that contribute to CO_(2),SO_(2),and total particulate matter(TPM)emissions,and to sort out key emission pathways(e.g.,Final Demand→Sector…).The results indicate that S2(Mining of Fossil Energy),S10(Nonmetal Mineral Products),S11(Metal Smelting),S13(Power and Heat)and S17(Transportation)are mainly responsible for CO_(2),SO_(2),and TPM direct emissions on the production side,while S16(Construction),S12(Equipment)and S18(Services)account for more than 45%of CO_(2),SO_(2),and TPM embodied emissions on the consumption side.32 shared emission pathways are extracted from the top 100 pathways for CO_(2),SO_(2),and TPM emissions,which account for 27%-51%of total emissions in Henan Province.P9(Export→Nonmetal Mineral Products),P10(Export→Metal Smelting)and P21(Gross Capital Formation→Construction→Nonmetal Mineral Products)are the leading paths responsible for embodied emissions.The research results provide the foundation and guidance for well-designed mitigation policies,as well as a reference for better synergistic control in provinces facing similar situations.展开更多
While Western modernization is often regarded as a dominant model of linear progress,existing theories frequently overlook the diversity of modernization paths and the underlying commonalities shared across them.The r...While Western modernization is often regarded as a dominant model of linear progress,existing theories frequently overlook the diversity of modernization paths and the underlying commonalities shared across them.The rise of alternative models,exemplified by Chinese path to modernization,underscores the potential for multiple trajectories of modernization and reveals three core elements that define these paths:building consensus on development,generating momentum for growth,and enhancing resilience to challenges.The success of Chinese path to modernization can be attributed to several key factors:the establishment of a national development consensus driven by the leadership of the Communist Party of China;the creation of development momentum through endogenous growth,optimal resource allocation,and a sustained commitment to reform and opening-up;and the strengthening of resilience via economic diversification,gradual reforms,and robust risk management strategies.In contrast,African nations present a distinct mix of traditional consensus governance and modern democratic practices,while actively engaging in development-security-governance nexus management and refining early warning and crisis management systems.These countries are exploring their own paths to modernization,informed by their unique socio-political contexts.Despite many differences in national conditions,exchanges of experiences between China and African countries-focused on development consensus,momentum,and resilience-can break the myth that“modernization equals Westernization”.Such exchanges can empower developing nations to pursue their own,independent,and context-specific routes toward modernization.展开更多
During the development blasting of circular tunnels, the detonation of multiple blastholes arranged onconcentric circles induces a complex dynamic response in the surrounding rocks. This process involvesmultiple blast...During the development blasting of circular tunnels, the detonation of multiple blastholes arranged onconcentric circles induces a complex dynamic response in the surrounding rocks. This process involvesmultiple blast loadings, static stress unloadings, and stress redistributions. In this study, the dynamicstresses of the surrounding rocks during development blasting, considering multiple blasting-unloadingstages with exponential paths and triangular paths (linear simplified paths of exponential paths), aresolved based on the dynamic theory and the Fourier transform method. Then, a corresponding discreteelement model is established using particle flow code (PFC). The multiple-stage dynamic stress andfracture distribution under different in situ stress levels and lateral coefficients are investigated. Theoreticalresults indicate that the peak compressive stresses in the surrounding rocks induced by bothtriangular and exponential paths are equal, while the triangular path generates greater additional dynamictensile stresses, particularly in the circumferential direction, compared to the exponential path.Numerical results show that the exponential path causes less dynamic circumferential tensile damageand forms fewer radial fractures than the triangular path in the first few blast stages;conversely, itexacerbates the damage and instability in the final blasting-unloading stage and forms more circumferentialfractures. Furthermore, the in situ stress determines which of the two opposite effects isdominant. Therefore, when using overly simplified triangular paths to evaluate the stability of surroundingrocks, potential overestimation or underestimation caused by different failure mechanismsshould be considered. Specifically, under high horizontal and vertical stresses, the static stress redistributionwith layer-by-layer blasting suppresses dynamic circumferential tensile and radial compressivedamage. The damage evolution of surrounding rocks in multi-stage blasting under different in situstresses is summarized and classified according to the damage mechanism and characteristics, which canguide blasting and support design.展开更多
With the deep integration of digitization and intelligence,smart teaching has become an important trend in the field of education.As a key link in cultivating professional nursing talents,higher nursing education face...With the deep integration of digitization and intelligence,smart teaching has become an important trend in the field of education.As a key link in cultivating professional nursing talents,higher nursing education faces new opportunities and challenges in the context of smart teaching.This article deeply explores the necessity of innovating higher nursing education in the context of smart teaching,analyzes the current problems in higher nursing education,and proposes specific innovation paths from the aspects of teaching philosophy,teaching mode,teaching resources,teacher team building,and evaluation system.The aim is to improve the quality of higher nursing education and provide theoretical references for cultivating high-quality nursing talents that meet the needs of smart healthcare.展开更多
The Wiener index of a graph is defined to be the sum of the distances of all pairs of vertices in the graph.The kth power G^(k) of a graph G is the graph on V(G)and two vertices are adjacent if and only if their dista...The Wiener index of a graph is defined to be the sum of the distances of all pairs of vertices in the graph.The kth power G^(k) of a graph G is the graph on V(G)and two vertices are adjacent if and only if their distance in G is less or equal to k.In this paper,we computed the Wiener index of the kth power of paths and cycles for any k≥2.展开更多
We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part o...We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part of South China is higher than that in the eastern part.The pattern of single-station frequency of the PWCEs are“Yangtze River(YR)uniform”and“east–west inverse”.The YR uniform pattern is the dominant mode,so we focus on this pattern.The cold-air paths for PWCEs of the YR uniform pattern are divided into three types—namely,the west,northwest and north types—among which the west type accounts for the largest proportion.The differences in atmospheric circulation of the PWCEs under the three types of paths are obvious.The thermal inversion layer in the lower troposphere is favorable for precipitation during the PWCEs.The positive water vapor budget for the three types of PWCEs mainly appears at the southern boundary.展开更多
Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und...Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.展开更多
Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses ...Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.展开更多
We construct an involution over Dyck paths,which implies the distribution of statistics“the number of peak”,“the number of returns”and“the height of the last peak”.As an application,equidistributions of several ...We construct an involution over Dyck paths,which implies the distribution of statistics“the number of peak”,“the number of returns”and“the height of the last peak”.As an application,equidistributions of several Stirling statistics over 132-avoiding and 321-avoiding permutations are presented.展开更多
The karst groundwater of Cambrian limestone may become an important water source for industry and agriculture in the Pingdingshan area,and is also a potential threat to mining safety.Therefore,to find out the origin,f...The karst groundwater of Cambrian limestone may become an important water source for industry and agriculture in the Pingdingshan area,and is also a potential threat to mining safety.Therefore,to find out the origin,flow paths,and hydrogeochemical processes of karst groundwater beneath the Pingdingshan coalfield,a total of 16 water samples were collected.Our findings confirmed that the karst groundwater is mainly recharged by precipitation.The precipitation can directly supply the deep aquifer of the karst water system through the southwest limestone outcrops,and this area mostly includes the southern part of mines No.11,No.9,and the hidden outcrops in the southern part of mine No.2.What is more,the areas adjacent to the synclinal axis,including mines No.10,No.12,and No.8,may be the main discharge areas.A mixing model of^(87)Sr/^(86)Sr and Sr showed that in the southwest Pingdingshan coalfield,the proportion of precipitation decreased gradually from the recharge area to the discharge area,ranging from 89.1%to 17.1%.Besides,the northeast Pingdingshan coalfield is another recharge area for the whole karst system,thus,the infiltrating groundwater will indirectly supply the deep aquifer through Quaternary deposition near the mine No.13.Our research results can provide theoretical support for the prevention and control of groundwater disasters and the development and utilization of regional groundwater resources in the coalfield in Northern China.展开更多
The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration p...The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration promotion paths of EE in 284 Chinese cities during 2003‒2019 using the global super-efficiency minimum distance to strong efficient frontier(G-S-MinDS),exploratory spatial data analysis(ESDA),multiscale geographically weighted regression(MGWR),and fuzzy set qualitative comparative analysis(fsQCA)methods.The findings are:①China’s cities have an annual average EE of 0.658 with a growth rate of 0.53%,showing considerable promotion potential.②Industrial structure optimization,population agglomeration,economic development,and increased green coverage contribute positively,while government intervention and openness hinder China’s urban EE.③Four configurational promotion paths for enhancing China’s urban EE are identified,where among those paths population density is a core condition,while government intervention is not.This study provides valuable insights into substantially improving urban EE,emphasizing the need for targeted policies to address energy and environmental crises in China.展开更多
Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on s...Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal.展开更多
CO_(2) conversion into value-added products by electro-, photoand plasma catalysis under mild operating conditions(ambient temperature and pressure) is an emerging area to achieve carbon circularity by producing chemi...CO_(2) conversion into value-added products by electro-, photoand plasma catalysis under mild operating conditions(ambient temperature and pressure) is an emerging area to achieve carbon circularity by producing chemicals and fuels using directly renewable energy. Among all CO_(2) conversion approaches, the electrocatalytic reduction of CO_(2) is the most mature technology, capable of achieving high productivity(i.e. high current densities) at large scale, especially for producing carbon monoxide(CO), but with many examples showing selectivity to C_(2) carbon products.展开更多
Green transformation is an unavoidable choice for resource-based cities(RBCs)that face resource depletion and environmental pollution.Existing research has focused primarily on specific RBCs,making it challenging to a...Green transformation is an unavoidable choice for resource-based cities(RBCs)that face resource depletion and environmental pollution.Existing research has focused primarily on specific RBCs,making it challenging to apply green transformation strategies universally across cities.The fuzzy set qualitative comparative analysis(fsQCA)is a combination of qualitative and quantitative analyses that can handle multiple concurrent causality problems and determine how different conditions combine into configurations and generate an outcome.Thus,to address this gap,in this study,we established a research framework for green transformation and utilized the fsQCA to examine the configurations of 113 RBCs in China.By incorporating the element of time,this study explored the dynamic evolution of solutions in 2013,2016,and 2019.The main findings indicate that individual elements do not constitute the necessary conditions for improving the green transformation efficiency(GTE),and the systematic combination of multiple conditions is an effective path for realizing the improvement of the GTE in RBCs.Green transformation paths of RBCs exhibit the same destination through different paths.Additionally,the combination of system environment elements and system structure elements is both complementary and alternative.Differences in RBCs have led to various factor combinations and development paths,but there are some similarities in the key elements of the factor combinations at different stages.Economic environment,government support,and technological innovation are key factors that universally enhance the GTE in RBCs.These insights can assist city managers in formulating policies to drive green transformation and contribute to a better theoretical understanding of green transformation paths in RBCs.展开更多
It is one of the fundamental research contents of rural revitalization by constructing a ecological security pattern of rural landscape,providing important basis for scientifically formulating rural spatial planning a...It is one of the fundamental research contents of rural revitalization by constructing a ecological security pattern of rural landscape,providing important basis for scientifically formulating rural spatial planning and sustainable rural development.The research on ecological security patterns of landscape at home and abroad is mainly focused on urban areas.In the context of rural revitalization,the research on strategies and paths for constructing the ecological security pattern of rural landscapes aims to provide important references for the overall planning and design of rural areas and the optimization of rural resource allocation.Using 3S(GPS,RS,GIS)technology methods,this paper systematically analyzes and elaborates on the construction strategies and paths of rural water ecological security pattern,rural biological protection security pattern,rural geological disaster security pattern,and local cultural landscape security pattern.Through the comprehensive superposition of the patterns,a comprehensive ecological security pattern of rural landscape is finally constructed.In the process of constructing and improving the ecological security pattern of rural landscape,emphasis is placed on top-level design,long-term planning,multi-party participation,mechanism improvement,technological innovation,and the strategy of“integrating knowledge with action”.展开更多
文摘The prioritization of financial infrastructure construction serves as a crucial guarantee for the high-quality development of small and micro enterprises.However,resolving the financing challenges of small and micro enterprises is not a task to be accomplished overnight.It necessitates the establishment of a long-term mechanism,the acceleration of financial innovation,the gradual enhancement of the vitality of micro-entities,and the creation of a stable and healthy economic development environment.Therefore,the author first analyzes the current financing situation of small and micro enterprises,as well as the problems they face during the process of financial innovation enabling small and micro enterprises to access financing and solve their financing difficulties,such as insufficient technical support,an imperfect risk control system,incomplete information disclosure,and a lack of credit data.Subsequently,targeted paths for financial innovation are proposed,aiming to offer suggestions for solving the financing problems of small and micro enterprises.
文摘In view of the series of problems found in the rural collective economic audit in Zhangdian District of Zibo City in the past five years,this study used empirical research methods to deeply analyze the current situation and existing problems of the village collective audit work.On this basis,typical cases were selected for in-depth analysis,the effects of different audit modes were compared,and the reliable paths to improve the efficiency of village collective audit were studied and considered.The results show that the social governance strategy plays a positive role in improving the efficiency of village collective audit.This study is expected to provide a reference for the improvement of village collective audit efficiency,and is of great significance to improve the village collective financial management and promote the improvement of the rural governance system.
文摘Outer-independent Roman domination on graphs originates from the defensive strategy of Ancient Rome,which is that if any city without an army is attacked,a neighboring city with two armies could mobilize an army to support it and any two cities that have no army cannot be adjacent.The outer-independent Roman domination on graphs is an attractive topic in graph theory,and the definition is described as follows.Given a graph G=(V,E),a function f:V(G)→{0,1,2}is an outer-independent Roman dominating function(OIRDF)if f satisfies that every vertex v∈V with f(v)=0 has at least one adjacent vertex u∈N(v)with f(u)=2,where N(v)is the open neighborhood of v,and the set V0={v|f(v)=0}is an independent set.The weight of an OIRDF f is w(f)=∑_(v∈V)f(v).The value of minf w(f)is the outerindependent Roman domination number of G,denoted asγoiR(G).This paper is devoted to the study of the outer-independent Roman domination number of the Cartesian product of paths P_(n)□P_(m).With the help of computer,we find some recursive OIRDFs and then we present an upper bound ofγoiR(P_(n)□P_(m)).Furthermore,we prove the lower bound ofγoiR(P_(n)□P_(m))(n≤3)is equal to the upper bound.Hence,we achieve the exact value ofγoiR(P_(n)□P_(m))for n≤3 and the upper bound ofγoiR(P_(n)□P_(m))for n≥4.
基金The Second Batch of Comprehensive Reform and Quality Construction Projects of Party Building and Ideological and Political Education in 2024“Research on the Growth Patterns and Training Path of Excellent Counselors in Private Colleges”(HKDS2024YB11)。
文摘With the rapid development of private higher education,the construction of counselor teams in private universities has become increasingly important.This paper focuses on outstanding counselors in private universities,delving into their growth patterns and proposing targeted training paths based on this analysis.By reviewing relevant theories and analyzing case studies of excellent counselors,it is found that outstanding counselors in private universities exhibit stage-specific characteristics during their development,influenced by personal traits,school environment,career progression,and other factors.In terms of training approaches,efforts should be made to improve selection mechanisms,strengthen training systems,provide career development support,and create a positive work atmosphere,all aimed at enhancing the overall quality of the counselor team in private universities and better serving student growth and institutional development.
基金Anhui Natural Science Foundation Youth Program,Grant/Award Number:2208085QE142National Natural Science Foundations of China,Grant/Award Numbers:52004003,52304073Opening Foundation of Anhui Province Key Laboratory of Building Structure and Underground Engineering,Grant/Award Number:KLBSUE-2022-04。
文摘To study the energy evolution and failure characteristics of saturated sandstone under unloading conditions,rock unloading tests under different stress paths were conducted.The energy evolution mechanism of the unloading failure of saturated sandstone was systematically explored from the perspectives of the stress path,the initial confining pressure,and the energy conversion rate.The results show that(1)before the peak stress,the elastic energy increases with an increase in deviatoric stress,while the dissipated energy slowly increases first.After the peak stress,the elastic energy decreases with the decrease of deviatoric stress,and the dissipated energy suddenly increases.The energy release intensity during rock failure is positively correlated with the axial stress.(2)When the initial confining pressure is below a certain threshold,the stress path is the main factor influencing the total energy difference.When the axial stress remains constant and the confining pressure is unloading,the total energy is more sensitive to changes in the confining pressure.When the axial stress remains constant,the compressive deformation ability of the rock cannot be significantly improved by the increase in the initial confining pressure.The initial confining pressure is positively correlated with the rock's energy storage limit.(3)The initial confining pressure increases the energy conversion rate of the rock;the initial confining pressure is positively correlated with the energy conversion rate;and the energy conversion rate has a high confining pressure effect.The increase in the axial stress has a much greater impact on the elastic energy than the confining pressure.(4)When the deviatoric stress is small,the confining pressure mainly plays a protective role.Compared with the case of triaxial compression paths,the rock damage is more severe under unloading paths,and compared with the case of constant axial stress,the rock damage is more severe under increasing axial stress.
基金supported by the National Natural Science Foundation of China(No.42001246)the Energy Foundation(No.G-2209-34120).
文摘Synergistic reduction of carbon emissions and air pollution is the core means to address the two major strategic tasks of fundamentally improving the ecological environment and the‘Dual-carbon target’.The issue of synergistic reduction at the provincial level needs to be addressed as a matter of urgency.Taking Henan Province,the largest economy in central China,as an example,this study uses environmentally extended input-output analysis and structural path analysis to identify the key sectors that contribute to CO_(2),SO_(2),and total particulate matter(TPM)emissions,and to sort out key emission pathways(e.g.,Final Demand→Sector…).The results indicate that S2(Mining of Fossil Energy),S10(Nonmetal Mineral Products),S11(Metal Smelting),S13(Power and Heat)and S17(Transportation)are mainly responsible for CO_(2),SO_(2),and TPM direct emissions on the production side,while S16(Construction),S12(Equipment)and S18(Services)account for more than 45%of CO_(2),SO_(2),and TPM embodied emissions on the consumption side.32 shared emission pathways are extracted from the top 100 pathways for CO_(2),SO_(2),and TPM emissions,which account for 27%-51%of total emissions in Henan Province.P9(Export→Nonmetal Mineral Products),P10(Export→Metal Smelting)and P21(Gross Capital Formation→Construction→Nonmetal Mineral Products)are the leading paths responsible for embodied emissions.The research results provide the foundation and guidance for well-designed mitigation policies,as well as a reference for better synergistic control in provinces facing similar situations.
基金This article forms part of the 2021 Major Bidding Project under the Special Research Program on Significant Historical Issues,supported by the Chinese Academy of History and funded by the National Social Science Foundation of China:“General History of Africa(Multi-Volume Edition)”(Grant No.LSYZD21022).
文摘While Western modernization is often regarded as a dominant model of linear progress,existing theories frequently overlook the diversity of modernization paths and the underlying commonalities shared across them.The rise of alternative models,exemplified by Chinese path to modernization,underscores the potential for multiple trajectories of modernization and reveals three core elements that define these paths:building consensus on development,generating momentum for growth,and enhancing resilience to challenges.The success of Chinese path to modernization can be attributed to several key factors:the establishment of a national development consensus driven by the leadership of the Communist Party of China;the creation of development momentum through endogenous growth,optimal resource allocation,and a sustained commitment to reform and opening-up;and the strengthening of resilience via economic diversification,gradual reforms,and robust risk management strategies.In contrast,African nations present a distinct mix of traditional consensus governance and modern democratic practices,while actively engaging in development-security-governance nexus management and refining early warning and crisis management systems.These countries are exploring their own paths to modernization,informed by their unique socio-political contexts.Despite many differences in national conditions,exchanges of experiences between China and African countries-focused on development consensus,momentum,and resilience-can break the myth that“modernization equals Westernization”.Such exchanges can empower developing nations to pursue their own,independent,and context-specific routes toward modernization.
基金supported by the National Natural Science Foundation of China(Grant Nos.51927808 and 41630642)the Postgraduate Innovation Fund Project of Hunan Province(Grant No.CX20200242).
文摘During the development blasting of circular tunnels, the detonation of multiple blastholes arranged onconcentric circles induces a complex dynamic response in the surrounding rocks. This process involvesmultiple blast loadings, static stress unloadings, and stress redistributions. In this study, the dynamicstresses of the surrounding rocks during development blasting, considering multiple blasting-unloadingstages with exponential paths and triangular paths (linear simplified paths of exponential paths), aresolved based on the dynamic theory and the Fourier transform method. Then, a corresponding discreteelement model is established using particle flow code (PFC). The multiple-stage dynamic stress andfracture distribution under different in situ stress levels and lateral coefficients are investigated. Theoreticalresults indicate that the peak compressive stresses in the surrounding rocks induced by bothtriangular and exponential paths are equal, while the triangular path generates greater additional dynamictensile stresses, particularly in the circumferential direction, compared to the exponential path.Numerical results show that the exponential path causes less dynamic circumferential tensile damageand forms fewer radial fractures than the triangular path in the first few blast stages;conversely, itexacerbates the damage and instability in the final blasting-unloading stage and forms more circumferentialfractures. Furthermore, the in situ stress determines which of the two opposite effects isdominant. Therefore, when using overly simplified triangular paths to evaluate the stability of surroundingrocks, potential overestimation or underestimation caused by different failure mechanismsshould be considered. Specifically, under high horizontal and vertical stresses, the static stress redistributionwith layer-by-layer blasting suppresses dynamic circumferential tensile and radial compressivedamage. The damage evolution of surrounding rocks in multi-stage blasting under different in situstresses is summarized and classified according to the damage mechanism and characteristics, which canguide blasting and support design.
文摘With the deep integration of digitization and intelligence,smart teaching has become an important trend in the field of education.As a key link in cultivating professional nursing talents,higher nursing education faces new opportunities and challenges in the context of smart teaching.This article deeply explores the necessity of innovating higher nursing education in the context of smart teaching,analyzes the current problems in higher nursing education,and proposes specific innovation paths from the aspects of teaching philosophy,teaching mode,teaching resources,teacher team building,and evaluation system.The aim is to improve the quality of higher nursing education and provide theoretical references for cultivating high-quality nursing talents that meet the needs of smart healthcare.
基金Supported by National Natural Science Foundation of China(Grant No.12201471)the Special Foundation in Key Fields for Universities of Guangdong Province(Grant No.2022ZDZX1034).
文摘The Wiener index of a graph is defined to be the sum of the distances of all pairs of vertices in the graph.The kth power G^(k) of a graph G is the graph on V(G)and two vertices are adjacent if and only if their distance in G is less or equal to k.In this paper,we computed the Wiener index of the kth power of paths and cycles for any k≥2.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1505602)the National Natural Science Foundation of China (Grant No. 41705055)+2 种基金the Graduate Innovation Project of Jiangsu Province (Grant No. CXZZ11_0485)the Creative Teams of Jiangsu Qinglan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘We investigate the characteristics and mechanisms of persistent wet–cold events(PWCEs)with different types of coldair paths.Results show that the cumulative single-station frequency of the PWCEs in the western part of South China is higher than that in the eastern part.The pattern of single-station frequency of the PWCEs are“Yangtze River(YR)uniform”and“east–west inverse”.The YR uniform pattern is the dominant mode,so we focus on this pattern.The cold-air paths for PWCEs of the YR uniform pattern are divided into three types—namely,the west,northwest and north types—among which the west type accounts for the largest proportion.The differences in atmospheric circulation of the PWCEs under the three types of paths are obvious.The thermal inversion layer in the lower troposphere is favorable for precipitation during the PWCEs.The positive water vapor budget for the three types of PWCEs mainly appears at the southern boundary.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.51839003 and 42207221).
文摘Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.
基金Project(2022NSFSC0279)supported by the General Project of Sichuan Natural Science Foundation,ChinaProject(Z17113)supported by the Key Scientific Research Fund of Xihua University,ChinaProject(SR21A04)supported by the Research Center for Social Development and Social Risk Control of Sichuan Province,Key Research Base of Philosophy and Social Sciences,Sichuan University,China。
文摘Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal.
基金National Natural Science Foundation of China(Grant No.11701420)。
文摘We construct an involution over Dyck paths,which implies the distribution of statistics“the number of peak”,“the number of returns”and“the height of the last peak”.As an application,equidistributions of several Stirling statistics over 132-avoiding and 321-avoiding permutations are presented.
基金granted by the National Natural Science Foundation of China(42102297,41972254)Innovative Science and Technology Talents Team Construction Project of Henan Province(CXTD2016053)+2 种基金China Postdoctoral Science Foundation(2021M701098)Special Funds for Higher Education Basic Scientific Research Funds of Henan Province(NSFRF200103NSFRF210304)。
文摘The karst groundwater of Cambrian limestone may become an important water source for industry and agriculture in the Pingdingshan area,and is also a potential threat to mining safety.Therefore,to find out the origin,flow paths,and hydrogeochemical processes of karst groundwater beneath the Pingdingshan coalfield,a total of 16 water samples were collected.Our findings confirmed that the karst groundwater is mainly recharged by precipitation.The precipitation can directly supply the deep aquifer of the karst water system through the southwest limestone outcrops,and this area mostly includes the southern part of mines No.11,No.9,and the hidden outcrops in the southern part of mine No.2.What is more,the areas adjacent to the synclinal axis,including mines No.10,No.12,and No.8,may be the main discharge areas.A mixing model of^(87)Sr/^(86)Sr and Sr showed that in the southwest Pingdingshan coalfield,the proportion of precipitation decreased gradually from the recharge area to the discharge area,ranging from 89.1%to 17.1%.Besides,the northeast Pingdingshan coalfield is another recharge area for the whole karst system,thus,the infiltrating groundwater will indirectly supply the deep aquifer through Quaternary deposition near the mine No.13.Our research results can provide theoretical support for the prevention and control of groundwater disasters and the development and utilization of regional groundwater resources in the coalfield in Northern China.
基金the financial support provided by the National Natural Science Foundation of China[Grant No.72373138 and 71973131]Major Project of National Social Science Foundation of China[Grant No.19VHQ002].
文摘The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration promotion paths of EE in 284 Chinese cities during 2003‒2019 using the global super-efficiency minimum distance to strong efficient frontier(G-S-MinDS),exploratory spatial data analysis(ESDA),multiscale geographically weighted regression(MGWR),and fuzzy set qualitative comparative analysis(fsQCA)methods.The findings are:①China’s cities have an annual average EE of 0.658 with a growth rate of 0.53%,showing considerable promotion potential.②Industrial structure optimization,population agglomeration,economic development,and increased green coverage contribute positively,while government intervention and openness hinder China’s urban EE.③Four configurational promotion paths for enhancing China’s urban EE are identified,where among those paths population density is a core condition,while government intervention is not.This study provides valuable insights into substantially improving urban EE,emphasizing the need for targeted policies to address energy and environmental crises in China.
基金financially supported by the National Natural Science Foundation of China(Nos.52304265,52174216,and 52274145)the Natural Science Foundation of Jiangsu Province(No.BK20221121)the State Key Laboratory of Mining Disaster Prevention and Control(Shandong University of Science and Technology)and Ministry of Education(No.JMDPC202301)。
文摘Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal.
文摘CO_(2) conversion into value-added products by electro-, photoand plasma catalysis under mild operating conditions(ambient temperature and pressure) is an emerging area to achieve carbon circularity by producing chemicals and fuels using directly renewable energy. Among all CO_(2) conversion approaches, the electrocatalytic reduction of CO_(2) is the most mature technology, capable of achieving high productivity(i.e. high current densities) at large scale, especially for producing carbon monoxide(CO), but with many examples showing selectivity to C_(2) carbon products.
基金supported by the Chongqing Social Science Planning Fund,China(2023BS034)the Science and Technology Project of Chongqing Jiaotong University,China(F1230069).
文摘Green transformation is an unavoidable choice for resource-based cities(RBCs)that face resource depletion and environmental pollution.Existing research has focused primarily on specific RBCs,making it challenging to apply green transformation strategies universally across cities.The fuzzy set qualitative comparative analysis(fsQCA)is a combination of qualitative and quantitative analyses that can handle multiple concurrent causality problems and determine how different conditions combine into configurations and generate an outcome.Thus,to address this gap,in this study,we established a research framework for green transformation and utilized the fsQCA to examine the configurations of 113 RBCs in China.By incorporating the element of time,this study explored the dynamic evolution of solutions in 2013,2016,and 2019.The main findings indicate that individual elements do not constitute the necessary conditions for improving the green transformation efficiency(GTE),and the systematic combination of multiple conditions is an effective path for realizing the improvement of the GTE in RBCs.Green transformation paths of RBCs exhibit the same destination through different paths.Additionally,the combination of system environment elements and system structure elements is both complementary and alternative.Differences in RBCs have led to various factor combinations and development paths,but there are some similarities in the key elements of the factor combinations at different stages.Economic environment,government support,and technological innovation are key factors that universally enhance the GTE in RBCs.These insights can assist city managers in formulating policies to drive green transformation and contribute to a better theoretical understanding of green transformation paths in RBCs.
基金Sponsored by Key Project of Humanities and Social Sciences of Chongqing Education Commission(24SKGH346)Chongqing Natural Science Foundation General Project(CSTB2024NSCQ-MSX1067)Natural Science Project of Chongqing College of Humanities,Science&Technology(CRKZK2023010).
文摘It is one of the fundamental research contents of rural revitalization by constructing a ecological security pattern of rural landscape,providing important basis for scientifically formulating rural spatial planning and sustainable rural development.The research on ecological security patterns of landscape at home and abroad is mainly focused on urban areas.In the context of rural revitalization,the research on strategies and paths for constructing the ecological security pattern of rural landscapes aims to provide important references for the overall planning and design of rural areas and the optimization of rural resource allocation.Using 3S(GPS,RS,GIS)technology methods,this paper systematically analyzes and elaborates on the construction strategies and paths of rural water ecological security pattern,rural biological protection security pattern,rural geological disaster security pattern,and local cultural landscape security pattern.Through the comprehensive superposition of the patterns,a comprehensive ecological security pattern of rural landscape is finally constructed.In the process of constructing and improving the ecological security pattern of rural landscape,emphasis is placed on top-level design,long-term planning,multi-party participation,mechanism improvement,technological innovation,and the strategy of“integrating knowledge with action”.