Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challen...Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model.展开更多
针对知识推理模型在捕获实体之间的复杂语义特征方面难以捕捉多层次语义信息,同时未考虑单一路径的可解释性对正确答案的影响权重不同等问题,提出一种融合路径与子图特征的知识图谱(KG)多跳推理模型PSHAM(Hierarchical Attention Model ...针对知识推理模型在捕获实体之间的复杂语义特征方面难以捕捉多层次语义信息,同时未考虑单一路径的可解释性对正确答案的影响权重不同等问题,提出一种融合路径与子图特征的知识图谱(KG)多跳推理模型PSHAM(Hierarchical Attention Model fusing Path-Subgraph features)。PS-HAM将实体邻域信息与连接路径信息进行融合,并针对不同路径探索多粒度的特征。首先,使用路径级特征提取模块提取每个实体对之间的连接路径,并采用分层注意力机制捕获不同粒度的信息,且将这些信息作为路径级的表示;其次,使用子图特征提取模块通过关系图卷积网络(RGCN)聚合实体的邻域信息;最后,使用路径-子图特征融合模块对路径级与子图级特征向量进行融合,以实现融合推理。在两个公开数据集上进行实验的结果表明,PS-HAM在指标平均倒数秩(MRR)和Hit@k(k=1,3,10)上的性能均存在有效提升。对于指标MRR,与MemoryPath模型相比,PS-HAM在FB15k-237和WN18RR数据集上分别提升了1.5和1.2个百分点。同时,对子图跳数进行的参数验证的结果表明,PS-HAM在两个数据集上都在子图跳数在3时推理效果达到最佳。展开更多
文摘Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model.