Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence ...Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence rate when the problem is complex.Cultural algorithm(CA) can exploit knowledge extracted during the search to improve the performance of an evolutionary algorithm and show higher intelligence in treating complicated problems.So it is proposed that integrating binary particle swarm algorithm into cultural algorithm frame to develop a more efficient cultural binary particle swarm algorithm (CBPSOA) for fault feature selection.In CBPSOA,BPSOA is used as the population space of CA;the evolution of belief space adopts crossover,mutation and selection operations;the designs of acceptance function and influence function are improved according to the evolution character of BPSOA.The tests of optimizing functions show the proposed algorithm is valid and effective.Finally,CBPSOA is applied for fault feature selection.The simulations on Tennessee Eastman process (TEP) show the CBPSOA can perform better and more quickly converge than initial BPSOA.And with fault feature selection,more satisfied performance of fault diagnosis is obtained.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
主动配电网(Active Distribution Network)的产生对于加大可再生能源的消纳能力、提高用电互动化水平、实现配电网的灵活智能管理发挥着重要的作用,逐渐成为未来智能电网发展的重要方向。其中主动配电网能量管理系统(DMSs)作为主动配电...主动配电网(Active Distribution Network)的产生对于加大可再生能源的消纳能力、提高用电互动化水平、实现配电网的灵活智能管理发挥着重要的作用,逐渐成为未来智能电网发展的重要方向。其中主动配电网能量管理系统(DMSs)作为主动配电网的最高决策中心,通过对各分布式电源的有效控制和调度,保障配电网的全局优化运行。为提高主动配电网运行的经济性和可靠性,通过对主动配电网能量优化调度技术进行分析,考虑到风力发电和光伏发电的不确定性,结合随机模拟技术和惩罚函数方法,基于机会约束规划建立了含有风力发电机、光伏发电单元以及储能装置的主动配电网能量调度随机数学模型。在满足各种约束条件的基础上,使用改进的粒子群算法求解该模型。并以某地区实际系统为算例,通过与标准粒子群算法进行比较,验证所提模型的正确性与有效性。展开更多
基金National High Technology Research and Development Program of China(No.2007AA04Z171)
文摘Binary particle swarm optimization algorithm(BPSOA) has the excellent characters such as easy to implement and few set parameters.But it is tendentious to stick in the local optimal solutions and has slow convergence rate when the problem is complex.Cultural algorithm(CA) can exploit knowledge extracted during the search to improve the performance of an evolutionary algorithm and show higher intelligence in treating complicated problems.So it is proposed that integrating binary particle swarm algorithm into cultural algorithm frame to develop a more efficient cultural binary particle swarm algorithm (CBPSOA) for fault feature selection.In CBPSOA,BPSOA is used as the population space of CA;the evolution of belief space adopts crossover,mutation and selection operations;the designs of acceptance function and influence function are improved according to the evolution character of BPSOA.The tests of optimizing functions show the proposed algorithm is valid and effective.Finally,CBPSOA is applied for fault feature selection.The simulations on Tennessee Eastman process (TEP) show the CBPSOA can perform better and more quickly converge than initial BPSOA.And with fault feature selection,more satisfied performance of fault diagnosis is obtained.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
文摘主动配电网(Active Distribution Network)的产生对于加大可再生能源的消纳能力、提高用电互动化水平、实现配电网的灵活智能管理发挥着重要的作用,逐渐成为未来智能电网发展的重要方向。其中主动配电网能量管理系统(DMSs)作为主动配电网的最高决策中心,通过对各分布式电源的有效控制和调度,保障配电网的全局优化运行。为提高主动配电网运行的经济性和可靠性,通过对主动配电网能量优化调度技术进行分析,考虑到风力发电和光伏发电的不确定性,结合随机模拟技术和惩罚函数方法,基于机会约束规划建立了含有风力发电机、光伏发电单元以及储能装置的主动配电网能量调度随机数学模型。在满足各种约束条件的基础上,使用改进的粒子群算法求解该模型。并以某地区实际系统为算例,通过与标准粒子群算法进行比较,验证所提模型的正确性与有效性。