The utilization of high-strength steel bars(HSSB)within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement.Nevertheless,existing design codes exhibi...The utilization of high-strength steel bars(HSSB)within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement.Nevertheless,existing design codes exhibit limitations in addressing the distinct statistical characteristics of HSSB,particularly regarding strength design parameters.For instance,GB50010-2010 fails to specify design strength values for reinforcement exceeding 600 MPa,creating technical barriers for advancing HSSB implementation.This study systematically investigates the reliability of eccentric compression concrete columns reinforced with 600 MPa-grade HSSB through high-order moment method analysis.Material partial factors were calibrated against target reliability indices prescribed by GB50068-2018,incorporating critical variables including live-to-dead load ratios,design methodologies,and service conditions.The findings show that the value of k significantly affects the calibration of material partial factors,impacting the reliability of bearing capacity.Considering various k values and target reliability indices,it is recommended that the material partialfactorbe setat1.15,implyingthatthedesignstrengthfor600MPahigh-strengthsteelbars shouldbe considered as 522 MPa.For safety levels I and II,load adjustment factors of 1.1 and 0.9,respectively,may be applied.展开更多
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
Vibrational power flow on combined plates with a change in mass and stiffness or with viscoelastic damping layer used widely in engineering is studied. The expressions of flexural displacement and other physical quan...Vibrational power flow on combined plates with a change in mass and stiffness or with viscoelastic damping layer used widely in engineering is studied. The expressions of flexural displacement and other physical quantities are obtained using Laplace transformation and transfer matrix approach, then influences of changes in mass and stiffness of discontinuous material and the free damping layer on the input power flow and the transmitted power flow are discussed. The conclusions provide theory basis for structural optimization design and reducing noise and vibration展开更多
QC-Tree is one of the most storage-efficient structures for data cubes in an MOLAP system. Although QC- Tree can achieve a high compression ratio, it is still a fully materialized data cube. In this paper, an improved...QC-Tree is one of the most storage-efficient structures for data cubes in an MOLAP system. Although QC- Tree can achieve a high compression ratio, it is still a fully materialized data cube. In this paper, an improved structure PMC is presented allowing us to materialize only a part of the cells in a QC-Tree to save more storage space. There is a notable difference between our partially materialization algorithm and traditional materialized views selection algorithms. In a traditional algorithm, when a view is selected, all the cells in this view are to be materialized. Otherwise, if a view is not selected, all the cells in this view will not be materialized. This strategy results in the unstable query performance. The presented algorithm, however, selects and materializes data in cell level, and, along with further reduced space and update cost, it can ensure a stable query performance. A series of experiments are conducted on both synthetic and real data sets. The results show that PMC can further reduce storage space occupied by the data cube, and can shorten the time to update the cube.展开更多
基金supported by grants from the Natural Science Foundation of Fujian Province(Grant No.2022J05184).
文摘The utilization of high-strength steel bars(HSSB)within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement.Nevertheless,existing design codes exhibit limitations in addressing the distinct statistical characteristics of HSSB,particularly regarding strength design parameters.For instance,GB50010-2010 fails to specify design strength values for reinforcement exceeding 600 MPa,creating technical barriers for advancing HSSB implementation.This study systematically investigates the reliability of eccentric compression concrete columns reinforced with 600 MPa-grade HSSB through high-order moment method analysis.Material partial factors were calibrated against target reliability indices prescribed by GB50068-2018,incorporating critical variables including live-to-dead load ratios,design methodologies,and service conditions.The findings show that the value of k significantly affects the calibration of material partial factors,impacting the reliability of bearing capacity.Considering various k values and target reliability indices,it is recommended that the material partialfactorbe setat1.15,implyingthatthedesignstrengthfor600MPahigh-strengthsteelbars shouldbe considered as 522 MPa.For safety levels I and II,load adjustment factors of 1.1 and 0.9,respectively,may be applied.
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.
文摘Vibrational power flow on combined plates with a change in mass and stiffness or with viscoelastic damping layer used widely in engineering is studied. The expressions of flexural displacement and other physical quantities are obtained using Laplace transformation and transfer matrix approach, then influences of changes in mass and stiffness of discontinuous material and the free damping layer on the input power flow and the transmitted power flow are discussed. The conclusions provide theory basis for structural optimization design and reducing noise and vibration
基金Supported by the National Key Scientific and Technological Project: Research on the Management of the Railroad Fundamental Information (Grant No.2002BA407B01-2) and the Science Foundation of Beijing Jiaotong University (Grant No.2003SZ003).
文摘QC-Tree is one of the most storage-efficient structures for data cubes in an MOLAP system. Although QC- Tree can achieve a high compression ratio, it is still a fully materialized data cube. In this paper, an improved structure PMC is presented allowing us to materialize only a part of the cells in a QC-Tree to save more storage space. There is a notable difference between our partially materialization algorithm and traditional materialized views selection algorithms. In a traditional algorithm, when a view is selected, all the cells in this view are to be materialized. Otherwise, if a view is not selected, all the cells in this view will not be materialized. This strategy results in the unstable query performance. The presented algorithm, however, selects and materializes data in cell level, and, along with further reduced space and update cost, it can ensure a stable query performance. A series of experiments are conducted on both synthetic and real data sets. The results show that PMC can further reduce storage space occupied by the data cube, and can shorten the time to update the cube.