As the competition for marine resources is increasingly fierce,the security of underwater acoustic communication has attracted a great deal of attention.The information and location of the communicating platform can b...As the competition for marine resources is increasingly fierce,the security of underwater acoustic communication has attracted a great deal of attention.The information and location of the communicating platform can be leaked during the traditional underwater acoustic communication technology.According to the unique advantages of chaos communication,we put forward a novel communication scheme using complex parameter modulation and the complex Lorenz system.Firstly,we design a feedback controller and parameter update laws in a complex-variable form with rigorous mathematical proofs(while many previous references on the real-variable form were only special cases in which the imaginary part was zero),which can be realized in practical engineering;then we design a new communication scheme employing parameter modulation.The main parameter spaces of the complex Lorenz system are discussed,then they are adopted in our communication scheme.We also find that there exist parametric attractors in the complex Lorenz system.We make numerical simulations in two channels for digital signals and the simulations verify our conclusions.展开更多
A scheme of chaotic secure communication based on the parameter modulation and the inversion of a chaotic dynamical system is analyzed. According to this scheme, information signal is modulated by a bifurcation parame...A scheme of chaotic secure communication based on the parameter modulation and the inversion of a chaotic dynamical system is analyzed. According to this scheme, information signal is modulated by a bifurcation parameter of the transmitter, which is in chaotic state. In the receiver, a proportional integral feedback demodulator is used to demodulate the information signal, which only uses the available synchronizing error as well as stateness of receiver. The purpose of this demodulator is proposed to overcome the influence of differentiation operation, nonlinear part and singularities in chaotic system. Numerical simulation is proposed to show the effectiveness of this demodulator.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1806202,61773010,and 61903207)the International Collaborative Research Project of Qilu University of Technology(Grant No.QLUTGJHZ2018020)Major Scientific and Technological Innovation Projects of Shandong Province,China(Grant Nos.2019JZZY010731 and 2020CXGC010901).
文摘As the competition for marine resources is increasingly fierce,the security of underwater acoustic communication has attracted a great deal of attention.The information and location of the communicating platform can be leaked during the traditional underwater acoustic communication technology.According to the unique advantages of chaos communication,we put forward a novel communication scheme using complex parameter modulation and the complex Lorenz system.Firstly,we design a feedback controller and parameter update laws in a complex-variable form with rigorous mathematical proofs(while many previous references on the real-variable form were only special cases in which the imaginary part was zero),which can be realized in practical engineering;then we design a new communication scheme employing parameter modulation.The main parameter spaces of the complex Lorenz system are discussed,then they are adopted in our communication scheme.We also find that there exist parametric attractors in the complex Lorenz system.We make numerical simulations in two channels for digital signals and the simulations verify our conclusions.
文摘A scheme of chaotic secure communication based on the parameter modulation and the inversion of a chaotic dynamical system is analyzed. According to this scheme, information signal is modulated by a bifurcation parameter of the transmitter, which is in chaotic state. In the receiver, a proportional integral feedback demodulator is used to demodulate the information signal, which only uses the available synchronizing error as well as stateness of receiver. The purpose of this demodulator is proposed to overcome the influence of differentiation operation, nonlinear part and singularities in chaotic system. Numerical simulation is proposed to show the effectiveness of this demodulator.