Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ...Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.展开更多
Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expr...Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This is theoretically important for studying the stabilization and asymptotic stability of the second order generalized distributed parameter system.展开更多
In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the me...In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.展开更多
A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial d...A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.展开更多
This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple...This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple actuators, only one actuator can receive the control signal and be activated over an unfixed time interval, and the other actuators keep dormant. After incorporating a state observer into the event generator, the event-driven control loop and the minimum inter-event time are ultimately bounded. Based on the event-driven state feedback control, the time intervals of unfixed length can be obtained. The optimal switching policy is based on finite horizon linear quadratic optimal control at the beginning of each time subinterval. A simulation example demonstrate the effectiveness of the proposed policy.展开更多
This paper considered the optimal control problem for distributed parameter systems with mixed phase-control constraints and end-point constraints. Pontryagin's maximum principle for optimal control are derived vi...This paper considered the optimal control problem for distributed parameter systems with mixed phase-control constraints and end-point constraints. Pontryagin's maximum principle for optimal control are derived via Duboviskij-Milujin theorem.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
In this paper, iterative learning control(ILC) technique is applied to a class of discrete parabolic distributed parameter systems described by partial difference equations. A P-type learning control law is establishe...In this paper, iterative learning control(ILC) technique is applied to a class of discrete parabolic distributed parameter systems described by partial difference equations. A P-type learning control law is established for the system. The ILC of discrete parabolic distributed parameter systems is more complex as 3D dynamics in the time, spatial and iterative domains are involved.To overcome this difficulty, discrete Green formula and analogues discrete Gronwall inequality as well as some other basic analytic techniques are utilized. With rigorous analysis, the proposed intelligent control scheme guarantees the convergence of the tracking error. A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
This paper considers the necessary condition of the parameter identification problem dudt=(A+B(q))u u(0)=x x∈X with the cost functional J(q)≡12∫ T 0‖Cu(t;q)-y(t)‖ 2 H d t It is proved that the optimal...This paper considers the necessary condition of the parameter identification problem dudt=(A+B(q))u u(0)=x x∈X with the cost functional J(q)≡12∫ T 0‖Cu(t;q)-y(t)‖ 2 H d t It is proved that the optimal estimate q 0 is determined by the optimal system which consists of the sate equation,the adjoint equation and the optimal condition.展开更多
In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using n...In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.展开更多
Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the charac...Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the character of invariance of sliding control system about uncertainty on the sliding switching surface and stability are analyzed.展开更多
The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on cov...The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on coverage optimization methods are proposed to improve the control performance of the system and make the state norm of the system converge to zero faster. The coverage optimization problems are constructed based on the measurement of each agent. By solving the coverage optimization problems, the local optimal moving direction of each agent can be obtained. Then the gradient-based agent motion control laws are established. With the indicator function and the surface delta function, this method is generalized to n-dimensional space, and suitable for any sensing region with piecewise smooth boundaries. The stability and control performance of the system are analyzed. Numerical simulations show the effectiveness of the proposed methods.展开更多
Based on Duan's topological current theory,we propose a novel approach to study the topological properties of topological defects in a two-dimensional complex vector order parameter system.This method shows explicitl...Based on Duan's topological current theory,we propose a novel approach to study the topological properties of topological defects in a two-dimensional complex vector order parameter system.This method shows explicitly the fine topological structure of defects.The branch processes of defects in the vector order parameter system have also been investigated with this method.展开更多
Iterative learning control(ILC)is an intelligent control strategy which can achieve the desired trajectory tracking by continuously renewing the control signal based on the previous experience.In this article,an event...Iterative learning control(ILC)is an intelligent control strategy which can achieve the desired trajectory tracking by continuously renewing the control signal based on the previous experience.In this article,an event-triggered condition that can save system resources by reducing the number of iterative updates is proposed.Moreover,an event-triggered ILC algorithm is designed for linear discrete parabolic distributed parameter systems,the system input is updated with the learning law only when the derived triggered condition is met.Through rigorous mathematical analysis,the tracking error can converge to zero when the iterative batch approaches infinity under the given sufficient condition.Then,we also extended the above ideas to nonlinear case.By simulation,the effectiveness of the designed algorithm are illustrated.展开更多
The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale...The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critica...The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.展开更多
BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in th...BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in the pelvis,hips,and knees,the inverse relationship concerning knee pathology undergoing total knee arthroplasty(TKA)has been examined by a limited number of studies,yielding inconclusive results.AIM To generate evidence of the effect of TKA on the SSA from existing literature.METHODS Databases like PubMed,EMBASE,and Scopus were used to identify articles related to the“knee spine syndrome”phenomenon using a combination of subject terms and keywords such as“spinopelvic parameters”,“sagittal spinal balance”,and“total knee arthroplasty”were used with appropriate Boolean operators.Studies measuring the SSA following TKA were included,and research was conducted as per preferred reporting items for systematic review and metaanalysis guidelines.RESULTS A total of 475 participants had undergone TKA,and six studies measuring SSA were analysed.Following TKA,pelvic tilt was the only parameter that showed significant changes,while lumbar lordosis(LL),pelvic incidence,and sacral slope were non-significant,as evident from the forest plots.CONCLUSION The body's sagittal alignment is a complex balance between pelvic,spine,and lower extremity parameters.TKA,while having the potential to correct the flexion contracture,can also correct it.Still,the primary SSA for spinal pathology,i.e.,LL,may not be corrected in patients with co-existent spinal degenerative disease.展开更多
To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engi...To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.展开更多
A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter ident...A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.展开更多
文摘Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.
文摘Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This is theoretically important for studying the stabilization and asymptotic stability of the second order generalized distributed parameter system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)the 111 Project of China(Grant No.B12018)
文摘In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)
文摘A guidance policy for controller performance enhancement utilizing mobile sensor-actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy.
基金supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61104155)the Fundamental Research Funds for theCentral Universities,China(Grant Nos.JUDCF13037 and JUSRP51322B)+1 种基金the Programme of Introducing Talents of Discipline to Universities,China(GrantNo.B12018)the Jiangsu Innovation Program for Graduates,China(Grant No.CXZZ13-0740)
文摘This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple actuators, only one actuator can receive the control signal and be activated over an unfixed time interval, and the other actuators keep dormant. After incorporating a state observer into the event generator, the event-driven control loop and the minimum inter-event time are ultimately bounded. Based on the event-driven state feedback control, the time intervals of unfixed length can be obtained. The optimal switching policy is based on finite horizon linear quadratic optimal control at the beginning of each time subinterval. A simulation example demonstrate the effectiveness of the proposed policy.
文摘This paper considered the optimal control problem for distributed parameter systems with mixed phase-control constraints and end-point constraints. Pontryagin's maximum principle for optimal control are derived via Duboviskij-Milujin theorem.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金supported by National Natural Science Foundation of China(Nos.61364006 and 61374104)Guangxi Higher Education Science Research Projection(No.201203YB125)Project of Outstanding Young Teachers Training in Higher Education Institutions of Guangxi
文摘In this paper, iterative learning control(ILC) technique is applied to a class of discrete parabolic distributed parameter systems described by partial difference equations. A P-type learning control law is established for the system. The ILC of discrete parabolic distributed parameter systems is more complex as 3D dynamics in the time, spatial and iterative domains are involved.To overcome this difficulty, discrete Green formula and analogues discrete Gronwall inequality as well as some other basic analytic techniques are utilized. With rigorous analysis, the proposed intelligent control scheme guarantees the convergence of the tracking error. A numerical example is given to illustrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(No.697740 1 2 )
文摘This paper considers the necessary condition of the parameter identification problem dudt=(A+B(q))u u(0)=x x∈X with the cost functional J(q)≡12∫ T 0‖Cu(t;q)-y(t)‖ 2 H d t It is proved that the optimal estimate q 0 is determined by the optimal system which consists of the sate equation,the adjoint equation and the optimal condition.
基金supported by National Natural Science Foundation of China(61807016)Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18-1859)。
文摘In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.
基金Supported by the national natural science foundation (60574042)
文摘Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the character of invariance of sliding control system about uncertainty on the sliding switching surface and stability are analyzed.
基金supported by the National Natural Science Foundation of China(61807016 61174021)+3 种基金the Fundamental Research Funds for the Central Universities(JUSRP115A28 JUSRP51733B)the 111 Projeet(B12018)the Postgraduate Innovation Project of Jiangsu Province(KYLX151170)
文摘The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on coverage optimization methods are proposed to improve the control performance of the system and make the state norm of the system converge to zero faster. The coverage optimization problems are constructed based on the measurement of each agent. By solving the coverage optimization problems, the local optimal moving direction of each agent can be obtained. Then the gradient-based agent motion control laws are established. With the indicator function and the surface delta function, this method is generalized to n-dimensional space, and suitable for any sensing region with piecewise smooth boundaries. The stability and control performance of the system are analyzed. Numerical simulations show the effectiveness of the proposed methods.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275030)Cuiying Project of Lanzhou University of China (Grant No 225000-582404)
文摘Based on Duan's topological current theory,we propose a novel approach to study the topological properties of topological defects in a two-dimensional complex vector order parameter system.This method shows explicitly the fine topological structure of defects.The branch processes of defects in the vector order parameter system have also been investigated with this method.
基金supported in part by the National Natural Science Foundation of China(grant nos.62363002,61863004).
文摘Iterative learning control(ILC)is an intelligent control strategy which can achieve the desired trajectory tracking by continuously renewing the control signal based on the previous experience.In this article,an event-triggered condition that can save system resources by reducing the number of iterative updates is proposed.Moreover,an event-triggered ILC algorithm is designed for linear discrete parabolic distributed parameter systems,the system input is updated with the learning law only when the derived triggered condition is met.Through rigorous mathematical analysis,the tracking error can converge to zero when the iterative batch approaches infinity under the given sufficient condition.Then,we also extended the above ideas to nonlinear case.By simulation,the effectiveness of the designed algorithm are illustrated.
基金“High precision prestack reverse time depth migration imaging of long array seismic data in the East China Sea Shelf Basin”of the National Natural Science Foundation of China(No.42106207)“Seismic acquisition technology for deep strata under strong shielding layers in the sea and rugged seabed”of Laoshan Laboratory Science and Technology Innovation Project(No.LSKJ202203404)“Research on the compensation methods of the middledeep weak seismic reflections in the South Yellow Sea based on multi-resolution HHT time-frequency analysis”of the National Natural Science Foundation of China(No.42106208).
文摘The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金National Key R&D Program of China(No.2017YFB1304000)Fundamental Research Funds for the Central Universities,China(No.2232023G-05-1)。
文摘The high-speed winding spindle employs a flexible support system incorporating rubber O-rings.By precisely configuring the structural parameters and the number of the O-rings,the spindle can stably surpass its critical speed points and maintain operational stability across the entire working speed range.However,the support stiffness and damping of rubber O-rings exhibit significant nonlinear frequency dependence.Conventional experimental methods for deriving equivalent stiffness and damping,based on the principle of the forced non-resonance method,require fabricating custom setups for each O-ring specification and conducting vibration tests at varying frequencies,resulting in low efficiency and high costs.This study proposes a hybrid simulation-experimental method for dynamic parameter identification.Firstly,the frequency-dependent dynamic parameters of a specific O-ring support system are experimentally obtained.Subsequently,a corresponding parametric finite element model is established to simulate and solve the equivalent elastic modulus and equivalent stiffness-damping coefficient of this O-ring support system.Ultimately,after iterative simulation,the simulated and experimental results achieve a 99.7%agreement.The parametric finite element model developed herein can directly simulate and inversely estimate frequency-dependent dynamic parameters for O-rings of different specifications but identical elastic modulus.
文摘BACKGROUND Sagittal spinopelvic alignment(SSA)is essential for preserving a stable and effective upright posture and locomotion.Although alterations in the SSA are recognised to induce compensatory modifications in the pelvis,hips,and knees,the inverse relationship concerning knee pathology undergoing total knee arthroplasty(TKA)has been examined by a limited number of studies,yielding inconclusive results.AIM To generate evidence of the effect of TKA on the SSA from existing literature.METHODS Databases like PubMed,EMBASE,and Scopus were used to identify articles related to the“knee spine syndrome”phenomenon using a combination of subject terms and keywords such as“spinopelvic parameters”,“sagittal spinal balance”,and“total knee arthroplasty”were used with appropriate Boolean operators.Studies measuring the SSA following TKA were included,and research was conducted as per preferred reporting items for systematic review and metaanalysis guidelines.RESULTS A total of 475 participants had undergone TKA,and six studies measuring SSA were analysed.Following TKA,pelvic tilt was the only parameter that showed significant changes,while lumbar lordosis(LL),pelvic incidence,and sacral slope were non-significant,as evident from the forest plots.CONCLUSION The body's sagittal alignment is a complex balance between pelvic,spine,and lower extremity parameters.TKA,while having the potential to correct the flexion contracture,can also correct it.Still,the primary SSA for spinal pathology,i.e.,LL,may not be corrected in patients with co-existent spinal degenerative disease.
基金supported by the National Key Research and Development Program of China(No.2022YFB3706704)the Academician Special Science Research Project of CCCC(No.YSZX-03-2022-01-B).
文摘To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.
基金supported by the National Science and Technology Major Project(Grant No.J2019-Ⅳ-0003-0070).
文摘A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.