The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar...The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.展开更多
The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars ref...The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.展开更多
In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes fu...In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.展开更多
Micro-Doppler parameter estimation is crucial for moving targets.However,conventional methods face limitations like inadequate time-frequency(TF)resolution and poor generalization,while existing deep learning approach...Micro-Doppler parameter estimation is crucial for moving targets.However,conventional methods face limitations like inadequate time-frequency(TF)resolution and poor generalization,while existing deep learning approaches often treat TF analysis as a fixed preprocessing step.To overcome these challenges,this paper introduces a radar micro-Doppler parameter estimation method based on a gated dual-path dynamic-wavelet convolutional network(GDWCN).The GDWCN is an end-to-end deep learning framework that maps raw radar signals to micro-motion parameters by integrating clutter suppression,gated dual-path module,feature extraction,and parameter regression.Its core innovation is a gated dual-path module that combines dynamic convolution and learnable wavelet convolution,selecting the optimal processing path based on input signal characteristics.For the Inspire 2 drone,GDWCN reduced the mean absolute error(MAE)of frequency estimation by approximately 38%compared to the enhanced time-frequency micro-Doppler network,and its relative error by approximately 69%compared to the short-time Fourier transform(STFT),and 58%over the local maximum synchroextracting transform.Ablation studies further confirm the efficacy of the clutter suppression module and the attention mechanism.展开更多
Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter esti...Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter estimation.Firstly,a force analysis of the single-wheel pair model of the train is conducted to derive the calculation relationship for the wheel-rail adhesion coefficient in train dynamics.Then,an estimator based on parameter estimation is designed,and its stability is verified.This estimator is combined with the wheelset force analysis to estimate the wheel-rail adhesion coefficient.Finally,the approach is validated through joint simulations on the MATLAB/Simulink and AMESim platforms,as well as a hardware-in-the-loop semi-physical simulation experimental platform that accounts for system delay and noise conditions.The results indicate that the proposed algorithm effectively tracks changes in the adhesion coefficient during train braking,including the decrease in adhesion when the train brakes and slides,and the overall increase as the train speed decreases.The effectiveness of the algorithm was verified by setting different test conditions.The results show that the estimation algorithm can accurately estimate the adhesion coefficient,and through error analysis,it is found that the error between the estimated value of the adhesion coefficient and the theoretical value of the adhesion coefficient is within 5%.The adhesion coefficient obtained through the online estimation method based on the parameter estimation proposed in this paper demonstrates strong followability in both simulation and practical applications.展开更多
Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution g...Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers.展开更多
In recent years,the development of domestic commercial synthetic aperture radar(SAR)is in full swing,with multiple commercial SAR satellites in orbit,showing great potential in disaster monitoring,natural resource man...In recent years,the development of domestic commercial synthetic aperture radar(SAR)is in full swing,with multiple commercial SAR satellites in orbit,showing great potential in disaster monitoring,natural resource management and deformation observation.Fucheng-1 is the first C-band commercial SAR satellite for interferometric SAR(InSAR)service developed by Spacety China,which marks the gradual maturity of China’s remote sensing data service.Based on the raw data collected by Fucheng-1,this paper firstly introduces the range-Doppler algorithm(RDA),then illustrates the parameter estimation method on the basis of fractional Fourier transform(FrFT)to realize the accurate estimation of azimuth chirp rate,which effectively improves imaging quality.Finally,the L1-norm regularization based sparse imaging method is utilized to reconstruct images from down-sampled data.Experimental results show that the sparse imaging algorithm can accurately reconstruct the down-sampled Fucheng-1 data and suppress sidelobes and clutter.展开更多
The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
The existence and uniqueness of the maximum likelihood estimator(MLE)of parameter for the exponential-Poisson distribution is discussed by Ku s[2007.A new lifetime distribution.Computational Statistics and Data Analys...The existence and uniqueness of the maximum likelihood estimator(MLE)of parameter for the exponential-Poisson distribution is discussed by Ku s[2007.A new lifetime distribution.Computational Statistics and Data Analysis 51(9):4497-4509]in simple random sampling(SRS).As an alternative to the MLEs in SRS,Joukar et al.[2021.Parameter estimation for the exponential-poisson distribution based on ranked set samples.Communication in Statistics-Theory and Methods 50(3):560-581]discussed the MLE of parameter for this distribution in ranked set sampling(RSS).However,they did not discuss the existence and uniqueness of the MLE in RSS and did not provide explicit expressions for the Fisher information in RSS.In this article,we discuss the existence and uniqueness of the MLE of parameter in RSS and give explicit expressions for the Fisher information in RSS.The MLEs will be compared in terms of asymptotic efficiencies.Numerical studies and a real data application show that these MLEs in RSS can be real competitors for those in SRS.展开更多
The Barents Sea is a marginal sea of the Arctic Ocean and contains substantial hydrocarbon resources.In recent years,the Barents Sea has emerged as one of the Arctic regions with the most pronounced sea ice variabilit...The Barents Sea is a marginal sea of the Arctic Ocean and contains substantial hydrocarbon resources.In recent years,the Barents Sea has emerged as one of the Arctic regions with the most pronounced sea ice variability.To analyze sea ice changes in the Barents Sea,sea ice data from the National Snow and Ice Data Center were utilized.A remarkable decline in sea ice has been witnessed in the northern and eastern regions.This phenomenon has expanded the ice-free operational area for marine structures,highlighting the significance of wave factors.A site within this area was chosen to estimate the wave parameters.The wave data from ERA5 were categorized according to wave energy in each season.Four mixture joint distribution models for the wave height and period were constructed based on the mixture distribution method and copula theory,and environmental contours were developed and compared with the conditional probability method.Despite differences in the design parameter results,the mixture models demonstrate good performance in sample fitting,particularly in the distribution tails.Among these models,the Gaussian copula offers the best fit.展开更多
Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,...Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,Weibull,or generalized exponential distribution.In this article,we proved the existence and uniqueness of the maximum likelihood estimator(MLE)of the parameters of W ED(α,λ)in simple random sampling(SRS)and provided explicit expressions for the Fisher information number in SRS.Moreover,we also proved the existence and uniqueness of the MLE of the parameters of W ED(α,λ)in ranked set sampling(RSS)and provided explicit expressions for the Fisher information number in RSS.Simulation studies show that these MLEs in RSS can be real competitors for those in SRS.展开更多
Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical applicati...Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically.展开更多
Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in...Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.展开更多
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of severa...Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.展开更多
In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown tha...In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown that the proposed empirical Bayes estimaiton can be arbitrarily close to 1 under certain conditions.展开更多
Two kinds of parameter estimation methods (I) and (II) of combining forecasting based on harmontic mean are proposed and compared through a lot of simulation forecasting examples. A very helpful conclusion is obtained...Two kinds of parameter estimation methods (I) and (II) of combining forecasting based on harmontic mean are proposed and compared through a lot of simulation forecasting examples. A very helpful conclusion is obtained, which can lay solid foundations for correct application of the above methods.展开更多
The study aimed to determine the Xinjiang brown cattle's genetic param- eters of main growth and economic characters by using animal models and multiple traits derivative free restricted maximum likelihood (MTDFREML...The study aimed to determine the Xinjiang brown cattle's genetic param- eters of main growth and economic characters by using animal models and multiple traits derivative free restricted maximum likelihood (MTDFREML). Results showed that: the heritability values of Xinjiang brown cattle's growth characters, including birth weight, 6-month-age weight, one full year weight and 2-year-old weight, were 0.45, 0.37, 0.38 and 0.34, respectively, which were medium level. The heritability values of body measurement indexes of different ages were different, indexes such as one-year-old weight, 2-year-old weight, body slanting length and body height had comparatively strong phenotypic correlation and genetic correlation. It was suggested that the breeding work of Xinjiang brown cattle should focus on selecting major breeding objectives like body height and body slanting length.展开更多
A Bayesian method is used to evaluate the component safety failure model parameter of the safe arming system of an air faced missile in flight. It was proved that Bayes estimation of the model parameter is coinciden...A Bayesian method is used to evaluate the component safety failure model parameter of the safe arming system of an air faced missile in flight. It was proved that Bayes estimation of the model parameter is coincident with the physical explanation of the prior probability density distribution of the random parameter.展开更多
Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estim...Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estimate anisotropic parameters that are required for surface seismic depth imaging from vertical seismic profile(VSP) data, because the first arrivals of VSP data can be picked with much higher accuracy. In this study, we developed a method for estimating Thomsen's P-wave anisotropic parameters in VTI media using the first arrivals from walkaway VSP data. Model first-arrival travel times are calculated on the basis of the near-offset normal moveout correction velocity in VTI media and ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropic parameters δ and ε are determined by minimizing the difference between the calculated and observed travel times for the near and far offsets. Numerical forward modeling, using the proposed method indicates that errors between the estimated and measured anisotropic parameters are small. Using field data from an eight-azimuth walkaway VSP in Tarim Basin, we estimated the parameters δ and ε and built an anisotropic depth-velocity model for prestack depth migration processing of surface 3D seismic data. The results show improvement in imaging the carbonate reservoirs and minimizing the depth errors of the geological targets.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62120106003 and 62173301)。
文摘The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.
基金The National Natural Science Foundation of China under contract No. 42274159the Project supported by Key Laboratory of Space Ocean Remote Sensing and Application,MNR under contract No.2023CFO016。
文摘The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.
文摘In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data.
基金supported in part by the National Natural Science Foundation of China(No.62222120)the National Key Research and Development Program of China(No.2024YFB3909804)the Shandong Provincial Natural Science Foundation(No.ZR2024JQ003).
文摘Micro-Doppler parameter estimation is crucial for moving targets.However,conventional methods face limitations like inadequate time-frequency(TF)resolution and poor generalization,while existing deep learning approaches often treat TF analysis as a fixed preprocessing step.To overcome these challenges,this paper introduces a radar micro-Doppler parameter estimation method based on a gated dual-path dynamic-wavelet convolutional network(GDWCN).The GDWCN is an end-to-end deep learning framework that maps raw radar signals to micro-motion parameters by integrating clutter suppression,gated dual-path module,feature extraction,and parameter regression.Its core innovation is a gated dual-path module that combines dynamic convolution and learnable wavelet convolution,selecting the optimal processing path based on input signal characteristics.For the Inspire 2 drone,GDWCN reduced the mean absolute error(MAE)of frequency estimation by approximately 38%compared to the enhanced time-frequency micro-Doppler network,and its relative error by approximately 69%compared to the short-time Fourier transform(STFT),and 58%over the local maximum synchroextracting transform.Ablation studies further confirm the efficacy of the clutter suppression module and the attention mechanism.
基金supported by the National Natural Science Foundation of China(grant/award number 52072266).
文摘Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter estimation.Firstly,a force analysis of the single-wheel pair model of the train is conducted to derive the calculation relationship for the wheel-rail adhesion coefficient in train dynamics.Then,an estimator based on parameter estimation is designed,and its stability is verified.This estimator is combined with the wheelset force analysis to estimate the wheel-rail adhesion coefficient.Finally,the approach is validated through joint simulations on the MATLAB/Simulink and AMESim platforms,as well as a hardware-in-the-loop semi-physical simulation experimental platform that accounts for system delay and noise conditions.The results indicate that the proposed algorithm effectively tracks changes in the adhesion coefficient during train braking,including the decrease in adhesion when the train brakes and slides,and the overall increase as the train speed decreases.The effectiveness of the algorithm was verified by setting different test conditions.The results show that the estimation algorithm can accurately estimate the adhesion coefficient,and through error analysis,it is found that the error between the estimated value of the adhesion coefficient and the theoretical value of the adhesion coefficient is within 5%.The adhesion coefficient obtained through the online estimation method based on the parameter estimation proposed in this paper demonstrates strong followability in both simulation and practical applications.
基金supported via funding from Prince Sattam Bin Abdulaziz University project number(PSAU/2025/R/1446).
文摘Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers.
基金supported in part by the National Natural Science Foundation of China(No.62271248)the Natural Science Foundation of Jiangsu Province(No.BK20230090)the Key Laboratory of Land Satellite Remote Sensing Application through the Ministry of Natural Resources of China(No.KLSMNR-K202303).
文摘In recent years,the development of domestic commercial synthetic aperture radar(SAR)is in full swing,with multiple commercial SAR satellites in orbit,showing great potential in disaster monitoring,natural resource management and deformation observation.Fucheng-1 is the first C-band commercial SAR satellite for interferometric SAR(InSAR)service developed by Spacety China,which marks the gradual maturity of China’s remote sensing data service.Based on the raw data collected by Fucheng-1,this paper firstly introduces the range-Doppler algorithm(RDA),then illustrates the parameter estimation method on the basis of fractional Fourier transform(FrFT)to realize the accurate estimation of azimuth chirp rate,which effectively improves imaging quality.Finally,the L1-norm regularization based sparse imaging method is utilized to reconstruct images from down-sampled data.Experimental results show that the sparse imaging algorithm can accurately reconstruct the down-sampled Fucheng-1 data and suppress sidelobes and clutter.
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
基金Supported by the National Natural Science Foundation of China(11901236,12261036)Scientific Research Fund of Hunan Provincial Education Department(21A0328)Young Core Teacher Foundation of Hunan Province([2020]43).
文摘The existence and uniqueness of the maximum likelihood estimator(MLE)of parameter for the exponential-Poisson distribution is discussed by Ku s[2007.A new lifetime distribution.Computational Statistics and Data Analysis 51(9):4497-4509]in simple random sampling(SRS).As an alternative to the MLEs in SRS,Joukar et al.[2021.Parameter estimation for the exponential-poisson distribution based on ranked set samples.Communication in Statistics-Theory and Methods 50(3):560-581]discussed the MLE of parameter for this distribution in ranked set sampling(RSS).However,they did not discuss the existence and uniqueness of the MLE in RSS and did not provide explicit expressions for the Fisher information in RSS.In this article,we discuss the existence and uniqueness of the MLE of parameter in RSS and give explicit expressions for the Fisher information in RSS.The MLEs will be compared in terms of asymptotic efficiencies.Numerical studies and a real data application show that these MLEs in RSS can be real competitors for those in SRS.
基金the National Natural Science Foundation of China(No.52171284)the Natural Science Foundation of Shandong Province(No.ZR2023QE016).
文摘The Barents Sea is a marginal sea of the Arctic Ocean and contains substantial hydrocarbon resources.In recent years,the Barents Sea has emerged as one of the Arctic regions with the most pronounced sea ice variability.To analyze sea ice changes in the Barents Sea,sea ice data from the National Snow and Ice Data Center were utilized.A remarkable decline in sea ice has been witnessed in the northern and eastern regions.This phenomenon has expanded the ice-free operational area for marine structures,highlighting the significance of wave factors.A site within this area was chosen to estimate the wave parameters.The wave data from ERA5 were categorized according to wave energy in each season.Four mixture joint distribution models for the wave height and period were constructed based on the mixture distribution method and copula theory,and environmental contours were developed and compared with the conditional probability method.Despite differences in the design parameter results,the mixture models demonstrate good performance in sample fitting,particularly in the distribution tails.Among these models,the Gaussian copula offers the best fit.
基金Supported by the National Science Foundation of China(11901236,12261036)Scientific Research Fund of Hunan Provincial Education Department(21A0328)+2 种基金Provincial Natural Science Foundation of Hunan(2022JJ30469)Young Core Teacher Foundation of Hunan Province([2020]43)Provincial Postgraduate Innovation Foundation of Hunan(CX20221113)。
文摘Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,Weibull,or generalized exponential distribution.In this article,we proved the existence and uniqueness of the maximum likelihood estimator(MLE)of the parameters of W ED(α,λ)in simple random sampling(SRS)and provided explicit expressions for the Fisher information number in SRS.Moreover,we also proved the existence and uniqueness of the MLE of the parameters of W ED(α,λ)in ranked set sampling(RSS)and provided explicit expressions for the Fisher information number in RSS.Simulation studies show that these MLEs in RSS can be real competitors for those in SRS.
文摘Hepatocellular carcinoma presents with three distinct immune phenotypes,including immune-desert,immune-excluded,and immune-inflamed,indicating various treatment responses and prognostic outcomes.The clinical application of multi-omics parameters is still restricted by the expensive and less accessible assays,although they accurately reflect immune status.A comprehensive evaluation framework based on“easy-to-obtain”multi-model clinical parameters is urgently required,incorporating clinical features to establish baseline patient profiles and disease staging;routine blood tests assessing systemic metabolic and functional status;immune cell subsets quantifying subcluster dynamics;imaging features delineating tumor morphology,spatial configuration,and perilesional anatomical relationships;immunohistochemical markers positioning qualitative and quantitative detection of tumor antigens from the cellular and molecular level.This integrated phenomic approach aims to improve prognostic stratification and clinical decision-making in hepatocellular carcinoma management conveniently and practically.
基金Supported by the State Key Laboratory of Acoustics and Marine Information Chinese Academy of Sciences(SKL A202507).
文摘Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.
基金National Natural Science Foundation of China (4007401340134010)Chinese Joint Seismological Science Foundation (042002) and the project during the Tenth Five-year Plan.
文摘Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.
文摘In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown that the proposed empirical Bayes estimaiton can be arbitrarily close to 1 under certain conditions.
文摘Two kinds of parameter estimation methods (I) and (II) of combining forecasting based on harmontic mean are proposed and compared through a lot of simulation forecasting examples. A very helpful conclusion is obtained, which can lay solid foundations for correct application of the above methods.
基金Supported by the Special Fund of Modern Agricultural Technology System Construction(nycytx-38)"National Science and Technology Support Program Project-Study on the Key Technology of Safe and High-efficient Production of Xinjiang Beef and Its Demonstration(2011BAD47B00)Science and Technology Major Project Research of Autonomous Region-Study and Demonstration on the Breeding of New Variety(Strain)of Xinjiang Beef and the Hybridization Improvement Technology"(Project Number:201230116-10)~~
文摘The study aimed to determine the Xinjiang brown cattle's genetic param- eters of main growth and economic characters by using animal models and multiple traits derivative free restricted maximum likelihood (MTDFREML). Results showed that: the heritability values of Xinjiang brown cattle's growth characters, including birth weight, 6-month-age weight, one full year weight and 2-year-old weight, were 0.45, 0.37, 0.38 and 0.34, respectively, which were medium level. The heritability values of body measurement indexes of different ages were different, indexes such as one-year-old weight, 2-year-old weight, body slanting length and body height had comparatively strong phenotypic correlation and genetic correlation. It was suggested that the breeding work of Xinjiang brown cattle should focus on selecting major breeding objectives like body height and body slanting length.
文摘A Bayesian method is used to evaluate the component safety failure model parameter of the safe arming system of an air faced missile in flight. It was proved that Bayes estimation of the model parameter is coincident with the physical explanation of the prior probability density distribution of the random parameter.
基金supported by the National Science and Technology Major Project of China(No.2011ZX05046)
文摘Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estimate anisotropic parameters that are required for surface seismic depth imaging from vertical seismic profile(VSP) data, because the first arrivals of VSP data can be picked with much higher accuracy. In this study, we developed a method for estimating Thomsen's P-wave anisotropic parameters in VTI media using the first arrivals from walkaway VSP data. Model first-arrival travel times are calculated on the basis of the near-offset normal moveout correction velocity in VTI media and ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropic parameters δ and ε are determined by minimizing the difference between the calculated and observed travel times for the near and far offsets. Numerical forward modeling, using the proposed method indicates that errors between the estimated and measured anisotropic parameters are small. Using field data from an eight-azimuth walkaway VSP in Tarim Basin, we estimated the parameters δ and ε and built an anisotropic depth-velocity model for prestack depth migration processing of surface 3D seismic data. The results show improvement in imaging the carbonate reservoirs and minimizing the depth errors of the geological targets.