We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple elect...We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple electronic states while simultaneously tracking their time-dependent electronic,vibrational,and rotational dynamics.As an illustrative example,we consider neutral H_(2)molecules and simulate the laser-induced excitation dynamics of electronic and rotational states in strong laser fields,quantitatively distinguishing the respective contributions of electronic dipole transitions(within the classical-field approximation)and non-resonant Raman processes to the overall molecular dynamics.Furthermore,we precisely evaluate the relative contributions of direct tunneling ionization from the ground state and ionization following electronic excitation in the strong-field ionization of H_(2).The developed methodology shows strong potential for performing high-precision theoretical simulations of electronic-vibrational-rotational state excitations,ionization,and dissociation dynamics in molecules and their ions under intense laser fields.展开更多
The average variational principle was employed in this paper to study the evolution of large-scale and slowly varying Rossby wave packet with basic flow both in barotropic and baroclinic atmospheres. The evolution of ...The average variational principle was employed in this paper to study the evolution of large-scale and slowly varying Rossby wave packet with basic flow both in barotropic and baroclinic atmospheres. The evolution of the structure of Rossby wave packet with both time and space was studied. The results obtained in this paper are similar to the results of by WKBJ method. In addition, the dispersive process of the wave packet was analysed by taking Gaussian type wave packet as an initial disturbance. The valid time scale for application of wave packet theory in the atmosphere was obtained.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602502)the National Natural Science Foundation of China(Grant No.12450404)。
文摘We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple electronic states while simultaneously tracking their time-dependent electronic,vibrational,and rotational dynamics.As an illustrative example,we consider neutral H_(2)molecules and simulate the laser-induced excitation dynamics of electronic and rotational states in strong laser fields,quantitatively distinguishing the respective contributions of electronic dipole transitions(within the classical-field approximation)and non-resonant Raman processes to the overall molecular dynamics.Furthermore,we precisely evaluate the relative contributions of direct tunneling ionization from the ground state and ionization following electronic excitation in the strong-field ionization of H_(2).The developed methodology shows strong potential for performing high-precision theoretical simulations of electronic-vibrational-rotational state excitations,ionization,and dissociation dynamics in molecules and their ions under intense laser fields.
文摘The average variational principle was employed in this paper to study the evolution of large-scale and slowly varying Rossby wave packet with basic flow both in barotropic and baroclinic atmospheres. The evolution of the structure of Rossby wave packet with both time and space was studied. The results obtained in this paper are similar to the results of by WKBJ method. In addition, the dispersive process of the wave packet was analysed by taking Gaussian type wave packet as an initial disturbance. The valid time scale for application of wave packet theory in the atmosphere was obtained.