AIM:To evaluate retinal hemoglobin oxygen saturation in myopic eyes by scanning laser ophthalmoscope(SLO)and to assess its correlations with different severity of myopia.METHODS:Sixty-one eyes from 61 patients were in...AIM:To evaluate retinal hemoglobin oxygen saturation in myopic eyes by scanning laser ophthalmoscope(SLO)and to assess its correlations with different severity of myopia.METHODS:Sixty-one eyes from 61 patients were included and subdivided into three groups according to their refractive errors:high myopia group[20 eyes,spherical equivalent(SE)≤-6 D];low and moderate myopia(22 eyes,-6.0<SE≤-0.5 D);normal(19 eyes,-0.5<SE<+0.5 D).All subjects underwent SLO imaging with dual lasers(532 nm and 633 nm).The oxygen saturations of hemoglobin in arteries(SO_(2)A)and veins(SO_(2)V),and their differences(SO_(2)AV)were estimated from the optical densities of the vessels on the images at the two wavelengths.Pearson’s or Spearman’s rank correlation coefficient were calculated to assess the correlation between retinal hemoglobin oxygen saturation and refractive error/axial length(AL).RESULTS:For the retinal oxygen saturation,the SO_(2)V in high myopia group(73.21%±21.42%)was significantly higher than that in normal group(55.81%±21.69%)and low and moderate myopia group(56.88%±13.83%,P<0.05).The SE was significantly correlated with SO_(2)A(r=-0.30)and SO_(2)V(r=-0.36;P<0.05),and AL was also significantly correlated with SO_(2)A(r=0.27)and SO_(2)V(r=0.30;P<0.05).No significant correlations were found between SO_(2)AV and SE and AL(P>0.05).CONCLUSION:SO_(2)A and SO_(2)V increased in more myopic eye based on SLO measurements.Further studies are warranted to investigate the changes of retinal hemoglobin oxygen saturation in myopia with different methods.展开更多
Hyperbaric oxygenation(HBO)treatment protocols utilize low pressures up to 3ATA.Higher pressures may induce side effects such as convulsions due to brain toxicity.The optimal HBO pressure allowing for maximal therapy ...Hyperbaric oxygenation(HBO)treatment protocols utilize low pressures up to 3ATA.Higher pressures may induce side effects such as convulsions due to brain toxicity.The optimal HBO pressure allowing for maximal therapy and minimal toxicity is under controversy.However,it can be evaluated by monitoring oxygen delivery,saturation,and consumption.In this study,the monitoring system fixed on the rats’brain cortex included a time-sharing fluorometer-reflectometer for monitoring mitochondrial NADH and hemoglobin oxygenation(HbO_(2))combined with Laser Doppler Flowmetry(LDF)for blood-flow monitoring.Rats were located in a hyperbaric chamber and exposed to different pressures.The HBO pressure caused an increase in HbO_(2)and a decrease in NADH in proportion to the increase in hyperbaric pressure,up to a nearly maximum effect at 2.5ATA.At 6ATA,15 minutes before convulsions started,blood volume and NADH started to increase,while tissue O_(2)supply by hemoglobin remained stable.Oxygen pool includes oxygen dissolved in the plasma and also bounded to hemoglobin.Above 2.5ATA,hemoglobin is fully saturated and the oxygen pool nourishment derives only from the oxygen dissolved in the plasma,exceeding the physiological ability for autoregulation;hence,homeostasis is disturbed and convulsions appear.This information is vital because pressures around 2.5ATA–3ATA are standard clinically applied pressures used to treat most of the pathophysiological problems considering the potential benefit which must be balanced against the potential toxicity.This study enables,for the first time,to evaluate the oxygenation level of hemoglobin in the microcirculation.Furthermore,our study showed that additional oxygen pressure(above 2.5ATA)caused brain oxygen toxicity within a short variable period of time after the pressure elevation.展开更多
With a self-made near-infrared analytical instrument to blood and oxygen parameters in human brain, 80 cases in which 20 are healthy persons and 30 are anaesthetised cases and others are patients with heart function l...With a self-made near-infrared analytical instrument to blood and oxygen parameters in human brain, 80 cases in which 20 are healthy persons and 30 are anaesthetised cases and others are patients with heart function lack is taken to examine, and the data of blood and oxygen in brain tissue were collected and analyzed by the method of power spectrum and correlation function. The results indicate that: (1) The average brain oxygen saturation of healthy persons and anaesthetised cases is about 80%, in accord with normal parameter of physiology. Contrastively, the average brain oxygen saturation of patients with heart function lack is 72.8%, which is obviously less than that of healthy persons and anaesthetised cases. The probability of medical statistics is less than 0.01. (2) The shapes of wave of brain blood and oxygen for the healthy person and the anaesthetised case reveal small periodical fluctuations with stable shape and base line, and the trend of increase or decrease of blood and oxygen parameters in brain tissue is synchronous and a phase reversal, but for the patient with heart function lack in a brain oxygen lack state, the shapes of wave are irregular. This is a hint that near infrared light passing through tissue can reflect the intuitionistic change of brain blood and oxygen parameters.(3) The power spectra of brain blood and oxygen for the healthy person and the anaesthetised case has a clear main peak, narrow bandwidth and perfect superposition each other, but the power spectra for the patient with heart function lack in a brain oxygen lack state is on the contrary.(4) The average cross correlation coefficient of brain blood and oxygen for healthy persons and anaesthetised cases is -0.9825±0.1027 close to -1. But the average cross correlation coefficient for patients with heart function lack in a brain oxygen lack state is merely -0.8923±0.1035 which is obviously greater than -1 and the probability of medical statistics is less than 0.01. The clinic experiments have proved that the shapes of waves, the power spectrum and cross correlation coefficient of brain blood and oxygen are useful to analyze the physiological status and changes of blood and oxygen in human brain.展开更多
Blood transfusions are regarded as the most well-known and frequently performed cell transplantations.Although current transfusion systems are sophisticated,they cannot be freed from the inherent difficulties that inc...Blood transfusions are regarded as the most well-known and frequently performed cell transplantations.Although current transfusion systems are sophisticated,they cannot be freed from the inherent difficulties that include infection,short shelf life,and blood type mismatching.Artificial oxygen carriers produced using hemoglobin(Hb)are designated as Hb-based oxygen carriers(HBOCs),which are anticipated for use as biomaterials that have potential to resolve issues of transfusion by a radical paradigm shift.Various HBOCs,nanometer-sized to micrometer-sized bioparticles having an oxygen-carrying function,are developed for use as substitutes for red blood cells(RBCs).This paper presents an overview of the classification of HBOCs with reference to their histories,preparations,structures,functions,and in vitro and in vivo properties.Additionally,we give a more detailed introduction of our academic studies of liposome encapsulated Hb,designated as Hb-vesicles(HbV),which mimic the physiologically important corpuscular structure of RBCs.This review outlines perennial efforts and approaches to mimic RBC functions through chemical,genetic,and encapsulation techniques.It will provide important insights into the eventual realization of an alternative for RBC transfusion.展开更多
Different types of femtosecond optical tweezers have become a powerful tool in the modern biological field. However, how to control the irregular targets, including biological cells, using femtosecond optical tweezers...Different types of femtosecond optical tweezers have become a powerful tool in the modern biological field. However, how to control the irregular targets, including biological cells, using femtosecond optical tweezers remains to be explored. In this study, human red blood cells (hRBCs) are manipulated with femtosecond optical tweezers, and their states under different laser powers are investigated. The results indicate that optical potential traps only can capture the edge of hRBCs under the laser power from 1.4 to 2.8 mW, while it can make hRBCs turn over with the laser power more than 2.8 mW. It is suggested that femtosecond optical tweezers could not only manipulate biological cells, but also subtly control its states by adjusting the laser power.展开更多
基金Supported by Shantou Science and Technology Project(No.190917155269927)2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant(No.2020LKSFG06B).
文摘AIM:To evaluate retinal hemoglobin oxygen saturation in myopic eyes by scanning laser ophthalmoscope(SLO)and to assess its correlations with different severity of myopia.METHODS:Sixty-one eyes from 61 patients were included and subdivided into three groups according to their refractive errors:high myopia group[20 eyes,spherical equivalent(SE)≤-6 D];low and moderate myopia(22 eyes,-6.0<SE≤-0.5 D);normal(19 eyes,-0.5<SE<+0.5 D).All subjects underwent SLO imaging with dual lasers(532 nm and 633 nm).The oxygen saturations of hemoglobin in arteries(SO_(2)A)and veins(SO_(2)V),and their differences(SO_(2)AV)were estimated from the optical densities of the vessels on the images at the two wavelengths.Pearson’s or Spearman’s rank correlation coefficient were calculated to assess the correlation between retinal hemoglobin oxygen saturation and refractive error/axial length(AL).RESULTS:For the retinal oxygen saturation,the SO_(2)V in high myopia group(73.21%±21.42%)was significantly higher than that in normal group(55.81%±21.69%)and low and moderate myopia group(56.88%±13.83%,P<0.05).The SE was significantly correlated with SO_(2)A(r=-0.30)and SO_(2)V(r=-0.36;P<0.05),and AL was also significantly correlated with SO_(2)A(r=0.27)and SO_(2)V(r=0.30;P<0.05).No significant correlations were found between SO_(2)AV and SE and AL(P>0.05).CONCLUSION:SO_(2)A and SO_(2)V increased in more myopic eye based on SLO measurements.Further studies are warranted to investigate the changes of retinal hemoglobin oxygen saturation in myopia with different methods.
文摘Hyperbaric oxygenation(HBO)treatment protocols utilize low pressures up to 3ATA.Higher pressures may induce side effects such as convulsions due to brain toxicity.The optimal HBO pressure allowing for maximal therapy and minimal toxicity is under controversy.However,it can be evaluated by monitoring oxygen delivery,saturation,and consumption.In this study,the monitoring system fixed on the rats’brain cortex included a time-sharing fluorometer-reflectometer for monitoring mitochondrial NADH and hemoglobin oxygenation(HbO_(2))combined with Laser Doppler Flowmetry(LDF)for blood-flow monitoring.Rats were located in a hyperbaric chamber and exposed to different pressures.The HBO pressure caused an increase in HbO_(2)and a decrease in NADH in proportion to the increase in hyperbaric pressure,up to a nearly maximum effect at 2.5ATA.At 6ATA,15 minutes before convulsions started,blood volume and NADH started to increase,while tissue O_(2)supply by hemoglobin remained stable.Oxygen pool includes oxygen dissolved in the plasma and also bounded to hemoglobin.Above 2.5ATA,hemoglobin is fully saturated and the oxygen pool nourishment derives only from the oxygen dissolved in the plasma,exceeding the physiological ability for autoregulation;hence,homeostasis is disturbed and convulsions appear.This information is vital because pressures around 2.5ATA–3ATA are standard clinically applied pressures used to treat most of the pathophysiological problems considering the potential benefit which must be balanced against the potential toxicity.This study enables,for the first time,to evaluate the oxygenation level of hemoglobin in the microcirculation.Furthermore,our study showed that additional oxygen pressure(above 2.5ATA)caused brain oxygen toxicity within a short variable period of time after the pressure elevation.
文摘With a self-made near-infrared analytical instrument to blood and oxygen parameters in human brain, 80 cases in which 20 are healthy persons and 30 are anaesthetised cases and others are patients with heart function lack is taken to examine, and the data of blood and oxygen in brain tissue were collected and analyzed by the method of power spectrum and correlation function. The results indicate that: (1) The average brain oxygen saturation of healthy persons and anaesthetised cases is about 80%, in accord with normal parameter of physiology. Contrastively, the average brain oxygen saturation of patients with heart function lack is 72.8%, which is obviously less than that of healthy persons and anaesthetised cases. The probability of medical statistics is less than 0.01. (2) The shapes of wave of brain blood and oxygen for the healthy person and the anaesthetised case reveal small periodical fluctuations with stable shape and base line, and the trend of increase or decrease of blood and oxygen parameters in brain tissue is synchronous and a phase reversal, but for the patient with heart function lack in a brain oxygen lack state, the shapes of wave are irregular. This is a hint that near infrared light passing through tissue can reflect the intuitionistic change of brain blood and oxygen parameters.(3) The power spectra of brain blood and oxygen for the healthy person and the anaesthetised case has a clear main peak, narrow bandwidth and perfect superposition each other, but the power spectra for the patient with heart function lack in a brain oxygen lack state is on the contrary.(4) The average cross correlation coefficient of brain blood and oxygen for healthy persons and anaesthetised cases is -0.9825±0.1027 close to -1. But the average cross correlation coefficient for patients with heart function lack in a brain oxygen lack state is merely -0.8923±0.1035 which is obviously greater than -1 and the probability of medical statistics is less than 0.01. The clinic experiments have proved that the shapes of waves, the power spectrum and cross correlation coefficient of brain blood and oxygen are useful to analyze the physiological status and changes of blood and oxygen in human brain.
基金supporting to our research group with grants from the Japan Society for the Promotion of Science (JSPS)the Japan Agency for Medical Research and Development(AMED).
文摘Blood transfusions are regarded as the most well-known and frequently performed cell transplantations.Although current transfusion systems are sophisticated,they cannot be freed from the inherent difficulties that include infection,short shelf life,and blood type mismatching.Artificial oxygen carriers produced using hemoglobin(Hb)are designated as Hb-based oxygen carriers(HBOCs),which are anticipated for use as biomaterials that have potential to resolve issues of transfusion by a radical paradigm shift.Various HBOCs,nanometer-sized to micrometer-sized bioparticles having an oxygen-carrying function,are developed for use as substitutes for red blood cells(RBCs).This paper presents an overview of the classification of HBOCs with reference to their histories,preparations,structures,functions,and in vitro and in vivo properties.Additionally,we give a more detailed introduction of our academic studies of liposome encapsulated Hb,designated as Hb-vesicles(HbV),which mimic the physiologically important corpuscular structure of RBCs.This review outlines perennial efforts and approaches to mimic RBC functions through chemical,genetic,and encapsulation techniques.It will provide important insights into the eventual realization of an alternative for RBC transfusion.
基金supported by the National"863"Program of China(No.2006AA04Z307)the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.2006039)+2 种基金the National Natural Science Foundation of China(No.50775140)the Natural Science Foundation of Jiangsu Province(No.BK2006507)the Jiangsu Province Research Innovation Program of College Graduate(No.CX07B_086z).
文摘Different types of femtosecond optical tweezers have become a powerful tool in the modern biological field. However, how to control the irregular targets, including biological cells, using femtosecond optical tweezers remains to be explored. In this study, human red blood cells (hRBCs) are manipulated with femtosecond optical tweezers, and their states under different laser powers are investigated. The results indicate that optical potential traps only can capture the edge of hRBCs under the laser power from 1.4 to 2.8 mW, while it can make hRBCs turn over with the laser power more than 2.8 mW. It is suggested that femtosecond optical tweezers could not only manipulate biological cells, but also subtly control its states by adjusting the laser power.