期刊文献+
共找到1,022篇文章
< 1 2 52 >
每页显示 20 50 100
Interfacial Pt-N coordination for promoting oxygen reduction reaction 被引量:1
1
作者 Jialin Cai Yizhe Chen +5 位作者 Ruiwen Zhang Cheng Yuan Zeyu Jin Yongting Chen Shiming Zhang Jiujun Zhang 《Chinese Chemical Letters》 2025年第2期481-485,共5页
Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange... Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability. 展开更多
关键词 oxygen reduction reaction N-doped carbon PLATINUM Pt-N Theoretical calculations
原文传递
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:1
2
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Understanding amorphous PrO_(x)-based N-doped carbon catalyst as an efficient electrocatalyst for oxygen reduction reaction 被引量:1
3
作者 Xiao Man Ying Chang +2 位作者 Shaohong Guo Meilin Jia Jingchun Jia 《Journal of Rare Earths》 2025年第1期73-80,I0003,共9页
The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-bas... The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-based catalyst PrO_(x)-NC,and optimized the calcination temperature and proportion.The PrO_(x)-NC-900 catalyst has high durability and activity and exhibits superior ORR performance in alkaline electrolytes with an onset potential(E_(0))of 0.96 V and a half-wave potential(E_(1/2))of 0.85 V.The research results indicate that the ORR performance of rare earth oxide composite carbon catalysts can be improved by adjusting oxygen vacancies(Ov).In addition,high specific surface area,N rich defect carbon.increased oxygen vacancies,and the synergistic effect of oxygen vacancies and N-doped carbon interfacial layer play a significant part in the enhancement of ORR.The performance of the zinc air battery assembled with PrO_(x)-NC-900 is significantly improved,and rare earth oxides and carbon frameworks originating from metal organic frameworks(MOFs)contribute to the oxygen electrocatalyst and electron transfer rate of the zinc air battery.This catalyst provides promising information for the development of rare earth metal oxide nanostructures as potential candidate materials for ORR in alkaline media. 展开更多
关键词 Rare earths Metal-organic framework oxygen reduction reaction Zn-air batteries
原文传递
Ordering Degree Regulation of Pt_(2)NiCo Intermetallics for Efficient Oxygen Reduction Reaction
4
作者 Chen-Hao Zhang Han-Yu Hu +3 位作者 Jun-Hao Yang Qian Zhang Chang Yang De-Li Wang 《电化学(中英文)》 北大核心 2025年第4期12-23,共12页
Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometri... Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometrical effects as well as stronger intermetallic interactions due to the ordered arrangement of metal atoms,thus exhibiting superior electrocata-lytic activity and durability.However,quantitatively analyzing the ordering degree of IMC and exploring the correlation between the ordering degree and ORR activity remains extremely challenging.Herein,a series of ternary Pt_(2)NiCo interme-tallic catalysts(o-Pt_(2)NiCo)with different ordering degree were synthesized by annealing temperature modulation.Among them,the o-Pt_(2)NiCo which annealed at 800℃for two hours exhibits the highest ordering degree and the optimal ORR ac-tivity,which the mass activity of o-Pt_(2)NiCo is 1.8 times and 2.8 times higher than that of disordered Pt_(2)NiCo alloy and Pt/C.Furthermore,the o-Pt_(2)NiCo still maintains 70.8%mass activity after 30,000 potential cycles.Additionally,the ORR activity test results for Pt_(2)NiCo IMC with different ordering degree also provide a positive correlation between the ordering degree and ORR activity.This work provides a prospective design direction for ternary Pt-based electrocatalysts. 展开更多
关键词 Fuel cell oxygen reduction reaction ELECTROCATALYSIS Intermetallic compound Ordering degree
在线阅读 下载PDF
A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction
5
作者 Pei-Pei He Jin-Hua Shi +6 位作者 Xiao-Yu Li Ming-Jie Liu Zhou Fang Jing He Zhong-Jian Li Xin-Sheng Peng Qing-Gang He 《电化学(中英文)》 北大核心 2025年第1期31-40,共10页
The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNT... The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2). 展开更多
关键词 Metal organic framework CNT intercalated ELECTROCATALYSIS oxygen reduction reaction Microbial fuel cell
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
6
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Black phosphorus nanodots-modified Pt/C electrocatalyst for methanol-tolerant oxygen reduction in direct methanol fuel cells
7
作者 Li-Li Zhang Pan-Pan Lu +6 位作者 Ming-Ming Yin Ruo-Nan Li Bing Wang Xian-Di Ma Meng-Gai Jiao Wei Ma Zhen Zhou 《Rare Metals》 2025年第3期1767-1776,共10页
Designing advanced electrocatalysts with high methanol tolerance in the oxygen reduction reaction process is crucial for the sustainable implementation of direct methanol fuel cells.Herein,we present a Pt/C catalyst m... Designing advanced electrocatalysts with high methanol tolerance in the oxygen reduction reaction process is crucial for the sustainable implementation of direct methanol fuel cells.Herein,we present a Pt/C catalyst modified with black phosphorus(BP)nanodots(BPNDs-Pt/C)by using a facile ultrasonic mixing method.Experimental and computational investigations reveal that the electron transfer from BP to Pt leads to weak adsorption of hydroxyl groups on the Pt surface.As a result,the BPNDs-Pt/C catalyst exhibits efficient activity and anti-methanol ability for cathodic oxygen reduction electrocatalysis in an acidic medium.Additionally,it demonstrates high activity for oxygen reduction reaction(ORR)in an alternative alkaline system with cation exchange membrane and eliminable methanol penetration.This work highlights the feasibility of using non-metallic elements to regulate the electronic structure and surface properties of Pt-based nanomaterials.Furthermore,the designed BPNDs-Pt/C electrocatalyst,with controllable ORR performance,can be applied across various scenarios based on demand. 展开更多
关键词 Electrocatalysis oxygen reduction reaction Methanol tolerant Platinum Black phosphorus
原文传递
Regulating local electron transfer environment of covalent triazine frameworks through F,N co-modification towards optimized oxygen reduction reaction
8
作者 Quanyou Guo Yue Yang +6 位作者 Tingting Hu Hongqi Chu Lijun Liao Xuepeng Wang Zhenzi Li Liping Guo Wei Zhou 《Chinese Chemical Letters》 2025年第1期344-348,共5页
The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalyt... The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalytic active center.Therefore,the electronic conductivity is a vital parameter for oxygen reduction reaction(ORR).Covalent triazine frameworks(CTFs)have shown great potential application as electrocatalysts in ORR with a merit of the diverse building blocks.However,the intrinsic low conductivity and high impedance of CTFs could be significant setbacks in electrocatalytic application.Herein,CTFs were constructed by introducing F and N co-modification for efficient 2e^(-)ORR.Compared with the pristine CTF,the co-presence of F,N could increase the conductivity obviously by 1000-fold.As a result,F-N-CTF exhibits enhanced catalytic performance of H_(2)O_(2)generation and selectivity towards reaction pathways.This work reveals the importance of conductivity optimization for CTFs and provides guidance for designing high conductivity non-metallic organic semiconductor catalysts for 2e^(-)ORR. 展开更多
关键词 Covalent triazine frameworks CONDUCTIVITY Co-modification ELECTROCATALYSIS oxygen reduction reaction
原文传递
FeNC shell-stabilized L1_(0)-PtFe intermetallic nanoparticles for high-performance oxygen reduction
9
作者 Chengwen Yu Lecheng Liang +3 位作者 Zhangyan Mu Shaoqi Yin Yuwen Liu Shengli Chen 《Chinese Journal of Catalysis》 2025年第8期125-136,共12页
In the pursuit of high-performance proton exchange membrane fuel cells(PEMFCs),obtaining durable Pt-based intermetallic catalysts with small particle sizes for oxygen reduction reaction(ORR)stands as a crucial yet cha... In the pursuit of high-performance proton exchange membrane fuel cells(PEMFCs),obtaining durable Pt-based intermetallic catalysts with small particle sizes for oxygen reduction reaction(ORR)stands as a crucial yet challenging topic.Herein,we propose an idea of catalyst design utilizing Fe-phenanthroline(Phen)complex as precursor to integrate metal-nitrogen-carbon(M-N-C)with the strong anchoring effect into carbon shells,synthesizing highly ordered and small-sized(3.59 nm)PtFe intermetallic catalyst coated with iron-nitrogen-carbon(FeNC)shells(L1_(0)-PtFe@FeNC).The strong Fe-Phen interaction ensures the uniform dispersion of Fe species on Pt seeds so as to form protective shells suppressing the agglomeration and dissolution of PtFe nanoparticles(NPs)under the high-temperature annealing or harsh operational conditions.It exhibits excellent mass activity(MA)that is about five-fold increase compared to the commercial Pt/C,as well as the significantly improved MA retention after 30,000 potential cycles(68.2%vs.45.3%).Nitrogen-doped carbon(NC)shells and pure carbon(C)shells are used as comparison to demonstrate the advantages of FeNC shells.Durability test results show that NC and C shells obviously degrade after potential cycles,while well-preserved FeNC shells guarantee catalyst stability.Theoretical calculations reveal that the strong binding between FeNC shells and the Pt surface enhances the stability of both the nanoparticles and the FeNC shells. 展开更多
关键词 oxygen reduction reaction Intermetallic PtFe Surface coating Iron-nitrogen-carbon DURABILITY
在线阅读 下载PDF
Biomass-derived N-doped porous carbon supported single Fe atoms as low-cost and high-performance electrocatalysts for oxygen reduction reaction
10
作者 WANG Li-ping XIAO Jin +1 位作者 MAO Qiu-yun ZHONG Qi-fan 《Journal of Central South University》 2025年第4期1368-1383,共16页
Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and exp... Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost. 展开更多
关键词 oxygen reduction reaction single-atom catalyst porous carbon MICROPORE biomass
在线阅读 下载PDF
Co-doping-induced electronic reconfiguration of nanosized ZnS for facilitating oxygen reduction reaction in flexible aluminum-air batteries
11
作者 Yue Xu Jun-Yuan Tang +8 位作者 Shuai-Dong Li Hao-Lin Hu Ying-Jian He Shao-Feng Wang Zhao-Meng Wu Samuel Jeong Ze-Yun Cai Xi Lin Kai-Long Hu 《Rare Metals》 2025年第4期2352-2365,共14页
The development of high-performance and cost-efficient catalysts holds great significance in facilitating oxygen reduction reaction(ORR),which is a pivotal process in next-generation energy storage devices,such as alu... The development of high-performance and cost-efficient catalysts holds great significance in facilitating oxygen reduction reaction(ORR),which is a pivotal process in next-generation energy storage devices,such as aluminum-air batteries.Transition metal sulfides have been proposed as promising non-noble metal ORR catalysts.However,achieving platinum(Pt)-comparable activity remains a challenge.Herein,a Co-doping-triggered electronic reconfiguration strategy is reported to tune the charge distribution and coordination state of ZnS nanoparticles anchored on N,S co-doped carbon(ZnS/NSC),thereby optimizing the intermediate adsorption kinetics and promoting ORR activity.The half-wave potential of 0.87 V as well as 100-h continuous durability are obtained by Co-doped ZnS/NSC in alkaline media.In addition,the solid-state aluminum-air battery is further assembled by using Co-doped ZnS/NSC as a cathode catalyst,achieving a maximum peak density of 100 mW·cm^(−2) and discharge duration over 55 h.Density functional theory(DFT)calculations reveal that high electronegative Co-doping is beneficial for the construct of charge-transfer avenue and optimization of intermediate adsorption procedure.This study presents an efficient approach for preparing metal sulfides with high catalytic activity toward ORR in flexible metal-air batteries. 展开更多
关键词 oxygen reduction Catalyst anchoring Non-noble catalysts Doping Flexible batteries
原文传递
N-doped carbon confined ternary Pt_(2)NiCo intermetallics for efficient oxygen reduction reaction
12
作者 Chenhao Zhang Qian Zhang +6 位作者 Yezhou Hu Hanyu Hu Junhao Yang Chang Yang Ye Zhu Zhengkai Tu Deli Wang 《Chinese Chemical Letters》 2025年第3期432-438,共7页
Developing high performance electrocatalysts for the cathodic oxygen reduction reaction(ORR)is essential for the widespread application of fuel cells.Herein,a promising Pt_(2)NiCo atomic ordered ternary intermetallic ... Developing high performance electrocatalysts for the cathodic oxygen reduction reaction(ORR)is essential for the widespread application of fuel cells.Herein,a promising Pt_(2)NiCo atomic ordered ternary intermetallic compound with N-doped carbon layer coating(o-Pt_(2)NiCo@NC)has been synthesized via a facile method and applied in acidic ORR.The confinement effect provided by the carbon layer not only inhibits the agglomeration and sintering of intermetallic nanoparticles during high temperature process but also provides adequate protection for the nanoparticles,mitigating the aggregation,detachment and poisoning of nanoparticles during the electrochemical process.As a result,the o-Pt_(2)NiCo@NC demonstrates a mass activity(MA)and specific activity(SA)of 0.65 A/mgPt and 1.41mA/cm_(Pt) ^(2) in 0.1mol/L HClO_(4),respectively.In addition,after 30,000 potential cycles from 0.6 V to 1.0 V,the MA of o-Pt_(2)NiCo@NC shows much lower decrease than the disordered Pt_(2)NiCo alloy and Pt/C.Even cycling at high potential cycles of 1.5 V for 10,000 cycles,the MA still retains∼70%,demonstrating superior long-term durability.Furthermore,the o-Pt_(2)NiCo@NC also exhibits strong tolerance to CO,SO_(x),and PO_(x) molecules in toxicity tolerance tests.The strategy in this work provides a novel insight for the development of ORR catalysts with high catalytic activity,durability and toxicity tolerance. 展开更多
关键词 oxygen reduction reaction ELECTROCATALYSIS Ordered intermetallic Toxicity tolerance Carbon confinement
原文传递
Deciphering Local Microstrain‑Induced Optimization of Asymmetric Fe Single Atomic Sites for Efficient Oxygen Reduction
13
作者 Peng Zhang Siying Huang +5 位作者 Kuo Chen Xiaoqi Liu Yachao Xu Yongming Chai Yunqi Liu Yuan Pan 《Nano-Micro Letters》 2025年第11期395-409,共15页
Disrupting the symmetric electron distribution of porphyrin-like Fe singleatom catalysts has been considered as an effective way to harvest high intrinsic activity.Understanding the catalytic performance governed by g... Disrupting the symmetric electron distribution of porphyrin-like Fe singleatom catalysts has been considered as an effective way to harvest high intrinsic activity.Understanding the catalytic performance governed by geometric microstrains is highly desirable for further optimization of such efficient sites.Here,we decipher the crucial role of local microstrain in boosting intrinsic activity and durability of asymmetric Fe single-atom catalysts(Fe-N_(3)S_(1))by replacing one N atom with S atom.The high-curvature hollow carbon nanosphere substrate introduces 1.3%local compressive strain to Fe-N bonds and 1.5%tensile strain to Fe-S bonds,downshifting the d-band center and accelerating the kinetics of*OH reduction.Consequently,highly curved Fe-N_(3)S_(1)sites anchored on hollow carbon nanosphere(FeNS-HNS-20)exhibit negligible current loss,a high half-wave potential of 0.922 V vs.RHE and turnover frequency of 6.2 e^(−1)s^(−1)site−1,which are 53 mV more positive and 1.7 times that of flat Fe-N-S counterpart,respectively.More importantly,multiple operando spectroscopies monitored the dynamic optimization of strained Fe-N_(3)S_(1)sites into Fe-N_(3)sites,further mitigating the overadsorption of*OH intermediates.This work not only sheds new light on local microstrain-induced catalytic enhancement,but also provides a plausible direction for optimizing efficient asymmetric sites via geometric configurations. 展开更多
关键词 Local microstrain Asymmetric sites Dynamic mechanism Single-atom catalysts oxygen reduction
在线阅读 下载PDF
Hydrogen peroxide electrosynthesis via two-electron oxygen reduction:From pH effect to device engineering
14
作者 Xuyun Lu Yanan Chang +3 位作者 Shasha Wang Xiaoxuan Li Jianchun Bao Ying Liu 《Chinese Chemical Letters》 2025年第5期131-140,共10页
As a versatile and environmentally benign oxidant,hydrogen peroxide(H_(2)O_(2))is highly desired in sanitation,disinfection,environmental remediation,and the chemical industry.Compared with the conventional anthraquin... As a versatile and environmentally benign oxidant,hydrogen peroxide(H_(2)O_(2))is highly desired in sanitation,disinfection,environmental remediation,and the chemical industry.Compared with the conventional anthraquinone process,the electrosynthesis of H_(2)O_(2)through the two-electron oxygen reduction reaction(2e^(−)ORR)is an efficient,competitive,and promising avenue.Electrocatalysts and devices are two core factors in 2e^(−)ORR,but the design principles of catalysts for different pH conditions and the development trends of relevant synthesis devices remain unclear.To this end,this review adopts a multiscale perspective to summarize recent advancements in the design principles,catalytic mechanisms,and application prospects of 2e^(−)ORR catalysts,with a particular focus on the influence of pH conditions,aiming at providing guidance for the selective design of advanced 2e^(−)ORR catalysts for highly-efficient H_(2)O_(2)production.Moreover,in response to diverse on-site application demands,we elaborate on the evolution of H_(2)O_(2)electrosynthesis devices,from rotating ring-disk electrodes and H-type cells to diverse flow-type cells.We elaborate on their characteristics and shortcomings,which can be beneficial for their further upgrades and customized applications.These insights may inspire the rational design of innovative catalysts and devices with high performance and wide serviceability for large-scale implementations. 展开更多
关键词 ELECTROCATALYSIS Hydrogen peroxide oxygen reduction reaction pH effect Device engineering
原文传递
Atomic controlled shell thickness on Pt@Pt_(3)Ti core-shell nanoparticles for efficient and durable oxygen reduction
15
作者 Haoran Jiang Zichen Wang +5 位作者 Suhao Chen Yong Xiao Yu Zhu Wei Wu Runzhe Chen Niancai Cheng 《Journal of Materials Science & Technology》 2025年第2期212-220,共9页
The exploitation of durable and highly active Pt-based electrocatalysts for the oxygen reduction reaction(ORR)is essential for the commercialization of proton exchange membrane fuel cells(PEMFCs).Herein,we designed Pt... The exploitation of durable and highly active Pt-based electrocatalysts for the oxygen reduction reaction(ORR)is essential for the commercialization of proton exchange membrane fuel cells(PEMFCs).Herein,we designed Pt@Pt_(3)Ti core-shell nanoparticles with atomic-controllable shells through precise thermal diffusing Ti into Pt nanoparticles for effective and durable ORR.Combining theoretical and experiment analysis,we found that the lattice strain of Pt_(3)Ti shells can be tailored by precisely controlling the thick-ness of Pt_(3)Ti shell in atomic-scale on account of the lattice constant difference between Pt and Pt_(3)Ti to optimize adsorption properties of Pt_(3)Ti for ORR intermediates,thus enhancing its performance.The Pt@Pt_(3)Ti catalyst with one-atomic Pt_(3)Ti shell(Pt@1L-Pt_(3)Ti/TiO_(2)-C)demonstrates excellent performance with mass activity of 592 mA mgpt-1 and durability nearly 19.5-fold that of commercial Pt/C with negligible decay(2%)after 30,000 potential cycles(0.6-1.0 V vs.RHE).Notably,at higher potential cycles(1.0 V-1.5 V vs.RHE),Pt@1L-Pt_(3)Ti/TiO_(2)-C also showed far superior durability than Pt/C(9.6%decayed while 54.8% for commercial Pt/C).This excellent stability is derived from the intrinsic stability of Pt_(3)Ti alloy and the confinement effect of TiO_(2)-C.The catalyst's enhancement was further confirmed in PEMFC configuration. 展开更多
关键词 Pt-based catalysts Core-shell structure Atomic controllable Compressive strain oxygen reduction reaction
原文传递
Synergy of compress strain and antioxidant of platinum-copper for enhanced the oxygen reduction performance
16
作者 Jun Zhang Pingjuan Liang +9 位作者 Xinlan Xu Rong Wang Shuyue Liu Chunyuan Wang Boyu Liu Laizheng Luo Meng Jin Huan Liu Huan Yi Shi-Yu Lu 《Nano Materials Science》 2025年第1期105-112,共8页
The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still c... The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,we report a worm-liked PtCu nanocrystals dispersed on nitrogen-doped carbon hollow microspheres(Pt_(0.38)Cu_(0.62)/N-HCS).Benefiting from its structural and compositional advantages,the resulting Pt_(0.38)Cu_(0.62)/N-HCS catalyst delivers exceptional electrocatalytic activity for ORR,with a half-wave potential(E_(1/2))of 0.837 V,a mass activity of 0.672 A mgPt^(-1),and a Tafel slope of 50.66 mV dec^(-1),surpassing that of commercial Pt/C.Moreover,the Pt_(0.38)Cu_(0.62)/N-HCS follows the desired four-electron transfer mechanism throughout the ORR process,thereby displaying a high selectivity for direct reduction of O_(2)to H_(2)O.Remarkably,this catalyst also showcases high stability,with only a 25 mV drop in E_(1/2)after 10,000 cycles in an acidic electrolyte.Theoretical calculations elucidate the incorporation of Cu into Pt lattice induces compressive strain,which effectively tailors the d band center of Pt active sites and strengthens the surface chemisorption of O_(2)molecules on PtCu alloys.Consequently,the Pt_(0.38)Cu_(0.62)/N-HCS catalyst exhibits an improved ability to adsorb O_(2)molecules on its surface,accelerating the reaction kinetics of O_(2)conversion to*OOH.Additionally,Cu atoms,not only serving as sacrificial anode,undergo preferential oxidation during PEMFCs operation when compared to Pt,but also the stable Cu species in PtCu alloys contributes significantly to maintaining the strain effect,collectively enhancing both activity and durability.Overall,this research offers an effective and promising approach to enhance the activity and stability of Pt-based ORR electrocatalysts in PEMFCs. 展开更多
关键词 PtCu alloy Compressive strain oxygen reduction reaction Activity and durability Cu oxidation
在线阅读 下载PDF
Modulated FeWO_(4)electronic structure via P doping on nitrogen-doped porous carbon for improved oxygen reduction activity in zinc-air batteries
17
作者 Yue Gong Dai-Jie Deng +5 位作者 Huan Wang Jian-Chun Wu Lin-Hua Zhu Cheng Yan He-Nan Li Li Xu 《Rare Metals》 2025年第1期240-252,共13页
As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)poss... As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)possesses favorable electrochemical properties and thermodynamic stability,its intrinsic semiconductor characteristics result in a relatively slow electron transfer rate,limiting the ORR catalytic activity.In this work,the electronic structure of FeWO_(4)is significantly modulated by introducing phosphorus(P)atoms with abundant valence electrons.The P doping can adjust the electronic structure of FeWO_(4)and then optimize oxygen-containing intermediates'absorption/desorption efficiency to achieve improved ORR activity.Furthermore,the sodium chloride template is utilized to construct a porous carbon framework for anchoring phosphorus-doped iron tungstate(P-FeWO_(4)/PNC).The porous carbon skeleton provides numerous active sites for the absorption/desorption and redox reactions on the P-FeWO_(4)/PNC surface and serves as mass transport channels for reactants and intermediates.The P-FeWO_(4)/PNC demonstrates ORR performance(E1/2=0.86 V vs.RHE).Furthermore,the zinc-air batteries incorporating the P-FeWO_(4)/PNC composite demonstrate an increased peak power density(172.2 mW·cm^(-2)),high specific capacity(810.1 mAh·g^(-1)),and sustained long-term cycling stability lasting up to 240 h.This research not only contributes to the advancement of cost-effective tungsten-based non-precious metallic ORR catalysts,but also guides their utilization in zinc-air batteries. 展开更多
关键词 oxygen reduction reaction FeWO_(4) P doping Electronic structure Zinc-air batteries
原文传递
Rare-earth lanthanum-nitrogen-carbon enhanced by abundant microspores for efficient oxygen reduction reaction
18
作者 Ji Huang Cunhuai Yu +4 位作者 Jiawang Li Wanling Xiao Jian Bin Zhong Pei Kang Shen Zhi Qun Tian 《Journal of Energy Chemistry》 2025年第7期812-822,共11页
Transition metal-nitrogen-carbon(M-N-C)with 3d transition metals as noble metal-free catalyzing oxygen reduction reaction(ORR)electrocatalysts still face critical challenges in activity and durability due to the Fento... Transition metal-nitrogen-carbon(M-N-C)with 3d transition metals as noble metal-free catalyzing oxygen reduction reaction(ORR)electrocatalysts still face critical challenges in activity and durability due to the Fenton effect associated with these metals in practical application.To tackle the issue,herein,we report Fenton-inactive rare earth metal La-N-C with dual active sites for efficient ORR,which was synthesized by pyrolyzing a mixed complexing compound of 1,10-phenanthroline as ligand with LaCl_(3)and MgCl_(2)as an activation agent.The as-synthesized La-N-C features an abundant microporous structure with atomically dispersed LaN_(4)O moieties as new active sites,exhibiting outstanding ORR performance.Its half-wave potentials are 0.92 and 0.76 V in 0.1 M KOH and 0.5 M H_(2)SO_(4)respectively,and only a 10 mV half-wave potential loss after 50 K cycles in 0.1 M KOH,achieving the highest level of current non-3d M-N-C ORR electrocatalysts.Meanwhile,the ORR activity is further validated by efficient performance with a power density output of 211 and 480 mW cm^(-2)on a single Zn-air battery and proton exchange membrane fuel cell respectively.Furthermore,theoretical calculations confirm that the unique LaN_(4)O moiety adjacent to the microspore vacancy with graphitic N dopant not only presents a negative shift of the La 5d orbitals,significantly lowering the adsorption energy of*OOH in ORR,but also induces the carbon atom near the graphitic N as one more active site for ORR.This work highlights the potential application of La-N-C as an efficient ORR catalyst in green energy conversion devices. 展开更多
关键词 Metal-nitrogen-carbon Fenton-inactive single La atoms oxygen reduction reaction Fuel cells Zn-Air batteries
在线阅读 下载PDF
Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction
19
作者 Xinyuan Li Zhuozhu Li +8 位作者 Wenzhong Huang Jiantao Li Wei Zhang Shihao Feng Hao Fan Zhuo Chen Sungsik Lee Congcong Cai Liang Zhou 《Chinese Chemical Letters》 2025年第9期554-558,共5页
The advancement of efficient,cheap,and durable catalysts for oxygen reduction reaction(ORR)to substitute Pt/C in metal-air batteries is of paramount importance.However,traditional solvent-based methods fall short in t... The advancement of efficient,cheap,and durable catalysts for oxygen reduction reaction(ORR)to substitute Pt/C in metal-air batteries is of paramount importance.However,traditional solvent-based methods fall short in terms of environmental benign and scalability.Herein,a solvent-free organic-inorganic selfassembly approach is explored to construct cobalt single atom and cobalt nanocluster decorated nitrogendoped porous carbon spheres(Co-SA/NC@NCS).The solvent-free synthesis demonstrates an impressively high yield(282 g/L)and the resultant Co-SA/NC@NCS possesses a high N content(6.9 wt%).Density functional theory calculations disclose that the Co-SAs and Co-NCs are able to optimize the surface oxygen adsorption capability and enhance the conductivity of the NCS,thereby facilitating the ORR performance.The sol vent-free synthesis is also feasible for the synthesis of other non-noble metal element(Fe,Ni,and Zn)decorated nitrogen-doped porous carbon spheres. 展开更多
关键词 Organic-inorganic self-assembly Nitrogen-doped carbon oxygen reduction reaction Single atom catalyst Zn-air battery
原文传递
Monoatomic metalloporphyrinoid catalysts for efficient oxygen reduction
20
作者 Ying Yao Xiao-Ting Chen +4 位作者 Xinyuan Zhang Shangbin Jin Zhihong Tian Guoliang Li Li-Ming Yang 《Rare Metals》 2025年第6期3920-3933,共14页
In this research,we present a comprehensive investigation on the catalyst screening,reaction mechanism,and electrocatalytic properties of two-dimensional monoatomic metalloporphyrinoid(MPor)materials for the oxygen re... In this research,we present a comprehensive investigation on the catalyst screening,reaction mechanism,and electrocatalytic properties of two-dimensional monoatomic metalloporphyrinoid(MPor)materials for the oxygen reduction reaction(ORR).Through a combination of high-throughput screening,first-principles DFT calculations,and molecular dynamics simulations,we uncovered some promising oxygen reduction catalysts with limiting potentials of 0.60,0.57,0.56 V under acidic medium,and-0.17,-0.20,-0.21 V under basic medium for M=Co,Fe,Mn,respectively.Full reaction pathway search demonstrates that Co Por is a special case with 2e^(–)and 4e^(–)paths under both acidic and basic media,and for Fe Por and Mn Por,only 4e^(–)path is viable.In-depth analyses indicate that the adsorption free energy of OH and limiting potential shows the volcano curve relationship,which can guide the design and optimization of the ORR catalysts.The crystal orbital Hamiltonian population(COHP)between M and O in O_(2)-MPor can well explain why only Co Por has a 2e^(–)path,while other metals do not,because the Co–O bond is much weaker compared to other M–O bonds.Our research will shed some insights on designing efficient ORR catalysts,and stimulate the experimental efforts in this direction. 展开更多
关键词 Electrocatalytic oxygen reduction reaction Two-dimensional MPor monolayer Monoatomic catalyst High-throughput screening First-principles calculations
原文传递
上一页 1 2 52 下一页 到第
使用帮助 返回顶部