Lead and Zn uptake and chemical changes in rhizosphere soils of four emergent-rooted wetland plants;Aneilema bracteatum,Cyperus alternifolius,Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two e...Lead and Zn uptake and chemical changes in rhizosphere soils of four emergent-rooted wetland plants;Aneilema bracteatum,Cyperus alternifolius,Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two experiments:(1) rhizobag filled with "clean" or metal-contaminated soil for analysis of Pb and Zn in plants and rhizosphere soils;and (2) applied deoxygenated solution for analyzing their rates of radial oxygen loss (ROL).The results showed that the wetland plants with different ROL rates had significant effects on the mobility and chemical forms of Pb and Zn in rhizosphere under flooded conditions.These effects were varied with different metal elements and metal concentrations in the soils.Lead mobility in rhizosphere of the four plants both in the "clean" and contaminated soils was decreased,while Zn mobility was increased in the rhizosphere of the "clean" soil,but decreased in the contaminated soil.Among the four plants,V.serpyllifolia,with the highest ROL,formed the highest degree of Fe plaque on the root surface,immobilized more Zn in Fe plaque,and has the highest effects on the changes of Zn form (EXC-Zn) in rhizosphere under both "clean" and contaminated soil conditions.These results suggested that ROL of wetland plants could play an important role in Fe plaque formation and mobility and chemical changes of metals in rhizosphere soil under flood conditions.展开更多
Though oxygen defects are associated with deteriorated structures and aggravated cycling performance in traditional layered cathodes,the role of oxygen defects is still ambiguous in Li-rich layered oxides due to the i...Though oxygen defects are associated with deteriorated structures and aggravated cycling performance in traditional layered cathodes,the role of oxygen defects is still ambiguous in Li-rich layered oxides due to the involvement of oxygen redox.Herein,a Co-free Li-rich layered oxide Li_(1.286)Ni_(0.071)Mn_(0.643)O_(2)has been prepared by a co-precipitation method to systematically investigate the undefined effects of the oxygen defects.A significant O_(2)release and the propagation of oxygen vacancies were detected by operando differential electrochemical mass spectroscopy(DEMS)and electron energy loss spectroscopy(EELS),respectively.Scanning transmission electron microscopy-high angle annular dark field(STEMHAADF)reveals the oxygen vacancies fusing to nanovoids and monitors a stepwise electrochemical activation process of the large Li_(2)MnO_(3)domain upon cycling.Combined with the quantitative analysis conducted by the energy dispersive spectrometer(EDS),existed nano-scale oxygen defects actually expose more surface to the electrolyte for facilitating the electrochemical activation and subsequently increasing available capacity.Overall,this work persuasively elucidates the function of oxygen defects on oxygen redox in Co-free Li-rich layered oxides.展开更多
基金supported by the National Natural Science Foundation of China (No. 30570345,30770417)the Guangdong Natural Science Group Foundation (No.06202438)the Specialized Research Fund for the Doctoral Program of Higher Education,China (No. 20558097)
文摘Lead and Zn uptake and chemical changes in rhizosphere soils of four emergent-rooted wetland plants;Aneilema bracteatum,Cyperus alternifolius,Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two experiments:(1) rhizobag filled with "clean" or metal-contaminated soil for analysis of Pb and Zn in plants and rhizosphere soils;and (2) applied deoxygenated solution for analyzing their rates of radial oxygen loss (ROL).The results showed that the wetland plants with different ROL rates had significant effects on the mobility and chemical forms of Pb and Zn in rhizosphere under flooded conditions.These effects were varied with different metal elements and metal concentrations in the soils.Lead mobility in rhizosphere of the four plants both in the "clean" and contaminated soils was decreased,while Zn mobility was increased in the rhizosphere of the "clean" soil,but decreased in the contaminated soil.Among the four plants,V.serpyllifolia,with the highest ROL,formed the highest degree of Fe plaque on the root surface,immobilized more Zn in Fe plaque,and has the highest effects on the changes of Zn form (EXC-Zn) in rhizosphere under both "clean" and contaminated soil conditions.These results suggested that ROL of wetland plants could play an important role in Fe plaque formation and mobility and chemical changes of metals in rhizosphere soil under flood conditions.
基金supported by the National Natural Science Foundation of China(52272253)the"Lingyan"Research and Development Plan of Zhejiang Province(2022C01071)+2 种基金the S&T Innovation 2025 Major Special Programme of Ningbo(2018B10081)the Natural Science Foundation of Ningbo(202003N4030)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2022299)。
文摘Though oxygen defects are associated with deteriorated structures and aggravated cycling performance in traditional layered cathodes,the role of oxygen defects is still ambiguous in Li-rich layered oxides due to the involvement of oxygen redox.Herein,a Co-free Li-rich layered oxide Li_(1.286)Ni_(0.071)Mn_(0.643)O_(2)has been prepared by a co-precipitation method to systematically investigate the undefined effects of the oxygen defects.A significant O_(2)release and the propagation of oxygen vacancies were detected by operando differential electrochemical mass spectroscopy(DEMS)and electron energy loss spectroscopy(EELS),respectively.Scanning transmission electron microscopy-high angle annular dark field(STEMHAADF)reveals the oxygen vacancies fusing to nanovoids and monitors a stepwise electrochemical activation process of the large Li_(2)MnO_(3)domain upon cycling.Combined with the quantitative analysis conducted by the energy dispersive spectrometer(EDS),existed nano-scale oxygen defects actually expose more surface to the electrolyte for facilitating the electrochemical activation and subsequently increasing available capacity.Overall,this work persuasively elucidates the function of oxygen defects on oxygen redox in Co-free Li-rich layered oxides.