期刊文献+
共找到142篇文章
< 1 2 8 >
每页显示 20 50 100
Riverine sulfate sources and behaviors in arid environment,Northwest China:Constraints from sulfur and oxygen isotopes 被引量:2
1
作者 Yifu Xu Wenjing Liu +1 位作者 Bing Xu Zhifang Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期716-731,共16页
The fate of riverine sulfate ion (SO_(4)^(2-)) and its environmental effects in arid environment are difficult to evaluate due to its complicated sources and strongly coupled behaviors with water cycle which is signif... The fate of riverine sulfate ion (SO_(4)^(2-)) and its environmental effects in arid environment are difficult to evaluate due to its complicated sources and strongly coupled behaviors with water cycle which is significantly modified by humans.To understand the sulfur cycle in aquatic systems in arid environment,the chemical and sulfur and oxygen isotopic compositions (δ^(34)S_(SO4)and δ^(18)O_(SO4)) of major rivers around the Badain Jaran Desert,northwestern China,were investigated.These rivers had averaged SO_(4)^(2-)content at 1336μmol/L,over 10times higher than the global average.The δ^(34)S_(SO4)and δ^(18)O_(SO4)values ranged from-5.3‰to+11.8‰and+1.6‰to+12.8‰,respectively.The end-member analysis and the inverse model showed that riverine sulfate was mainly derived from evaporites dissolution (0-87%),sulfide oxidation (13%-100%) and precipitation (0-33%),indicating heterogeneity in sulfur sources and behaviors along the river drainage with the lithology variations and climate gradients.Multiple isotopic tools combining with hydro-chemistry compositions could be applied to reveal sulfur cycle in arid environment.Based on the calculation,sulfide oxidation plays the primary role in the headwater and upstream in the Qilian-Mountains area,where sulfide is widely exposed.While the proportion of evaporites dissolution contributing to riverine sulfate is much higher in downstream in a drier environment.Besides,less precipitation and higher temperature can lead to more intensive evaporation,affecting the process of sulfide oxidation and enhancing the rates of evaporites dissolution and sulfate precipitation in the basin. 展开更多
关键词 Sulfur and oxygen isotopes Source apportionment Inverse model Arid environment Inland rivers Northwestern China
原文传递
Tracing nitrate sources in one of the world's largest eutrophicated bays(Hangzhou Bay):insights from nitrogen and oxygen isotopes 被引量:1
2
作者 Zhi Yang Jianfang Chen +6 位作者 Haiyan Jin Hongliang Li Zhongqiang Ji Yangjie Li Bin Wang Zhenyi Cao Qianna Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期86-95,共10页
Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributi... Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019. 展开更多
关键词 nitrogen isotopes oxygen isotopes nitrogen cycle nitrate sources Hangzhou Bay
在线阅读 下载PDF
Response to the Lomagundi-Jatuli Event in the southwestern margin of the Yangtze Plate:Evidence from the carbon and oxygen isotopes of the Paleoproterozoic Yongjingshao Formation 被引量:13
3
作者 Jun-ping Liu Wei Yin +5 位作者 Shi-pan Yang Jiang-tai Zhao Wen-tao Zeng Feng Tang Shi-jun He Wei-ke Li 《China Geology》 CAS CSCD 2023年第1期50-60,共11页
The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoi... The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoic(2.22-2.06 Ga).Theδ^(13)C values of 46 dolostone samples collected from the Paleoproterozoic Yongjingshao Formation varied in the range of 0.05‰-4.95‰(V-PDB;maximum:4.95‰)in this study,which may be related to the multicellular eukaryotes in the Liangshan Formation in the Yimen Group.They are much higher than theδ^(13)C values of marine carbonates(-1.16‰on average).Theδ^(13)C values of other formations in the Paleoproterozoic Yimen Group are negative.The notable positive carbon isotope anomalies of the Yongjingshao Formation indicate the response to the LJE at the southwestern margin of the Yangtze Block,which is reported for the first time.Furthermore,they are comparable to theδ^(13)C values of carbonates in the Dashiling Formation of the Hutuo Group in the Wutaishan area in the North China Craton,the Wuzhiling Formation of the Songshan Group in the Xiong'er area,Henan Province,and the Dashiqiao Formation of the Liaohe Group in the Guanmenshan area,Liaoning Province.Therefore,it can be further concluded that the LJE is a global event.This study reveals that LJE occurred in Central Yunnan at 2.15-2.10 Ga,lasting for about 50 Ma.The macro-columnar,bean-shaped,and microfilament fossils and reticular ultramicrofossils of multicellular eukaryotes in this period were discovered in the Liangshan Formation of the Yimen Group.They are the direct cause for the LJE and are also the oldest paleontological fossils ever found.The major events successively occurring in the early stage of the Earth include the Great Oxygenation Event(first occurrence),the global Superiortype banded iron formations(BIFs),the Huronian glaciation,the Great Oxygenation Event(second occurrence),the explosion of multicellular eukaryotes,the positive carbon isotope excursion,and the global anoxic and selenium-rich sedimentary event.The authors think that the North China Craton and the Yangtze Craton were possibly in different tectonic locations of the same continental block during the Proterozoic. 展开更多
关键词 Lomagundi-Jatuli Event Eucaryon PALEOPROTEROZOIC Bean-shaped fossil Micro-filament fossil Micro-columnar fossil Carbon and oxygen isotopes Yangtze Plate Geological survey engineering China
在线阅读 下载PDF
Characteristics of Hydrogen and Oxygen Isotopes and Noble Gas Isotopes in the Groundwater of Weishan, Wudalianchi, Northeast China 被引量:1
4
作者 WANG Shuai HUANG Xuelian +5 位作者 QI Shihua HAN Yongjie KUANG Jian WANG Siqi WANG He XIAO Zhicai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第5期1729-1741,共13页
According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperatu... According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas. 展开更多
关键词 GROUNDWATER HYDROCHEMISTRY hydrogen and oxygen isotopes noble gases ~4He age mantle source input
在线阅读 下载PDF
Using triple oxygen isotopes and oxygen-argon ratio to quantify ecosystem production in the mixed layer of northern South China Sea slope region 被引量:1
5
作者 Zhuoyi Zhu Jun Wang +5 位作者 Guiling Zhang Sumei Liu Shan Zheng Xiaoxia Sun Dongfeng Xu Meng Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第6期1-15,共15页
Quantifying the gross and net production is an essential component of carbon cycling and marine ecosystem studies.Triple oxygen isotope measurements and the O_(2)/Ar ratio are powerful indices in quantifying the gross... Quantifying the gross and net production is an essential component of carbon cycling and marine ecosystem studies.Triple oxygen isotope measurements and the O_(2)/Ar ratio are powerful indices in quantifying the gross primary production and net community production of the mixed layer zone,respectively.Although there is a substantial advantage in refining the gas exchange term and water column vertical mixing calibration,application of mixed layer depth history to the gas exchange term and its contribution to reducing indices error are unclear.Therefore,two cruises were conducted in the slope regions of the northern South China Sea in October 2014(autumn)and June 2015(spring).Discrete water samples at Station L07 in the upper 150 m depth were collected for the determination ofδ^(17)0,δ^(18)O,and the O_(2)/Ar ratio of dissolved gases.Gross oxygen production(GOP)was estimated using the triple oxygen isotopes of the dissolved O_(2),and net oxygen production(NOP)was calculated using O_(2)/Ar ratio and O_(2)concentration.The vertical mixing effect in NOP was calibrated via a N_(2)O based approach.GOP for autumn and spring was(169±23)mmol/(m^(2)·d)(by O_(2))and(189±26)mmol/(m^(2)·d)(by O_(2)),respectively.While NOP was 1.5 mmol/(m^(2)·d)(by O_(2))in autumn and 8.2 mmol/(m^(2)·d)(by O_(2))in spring.Application of mixed layer depth history in the gas flux parametrization reduced up to 9.5%error in the GOP and NOP estimations.A comparison with an independent O_(2)budget calculation in the diel observation indicated a26%overestimation in the current GOP,likely due to the vertical mixing effect.Both GOP and NOP in June were higher than those in October.Potential explanations for this include the occurrence of an eddy process in June,which may have exerted a submesoscale upwelling at the sampling station,and also the markedly higher terrestrial impact in June. 展开更多
关键词 gross primary production net community production triple oxygen isotopes O_(2)/Ar air-sea gas flux piston velocity
在线阅读 下载PDF
Distribution of Carbon and Oxygen Isotopes in theSequence Stratigraphic Framework of the Middle andUpper Proterozoic in the Ming Tombs Area, Beijing
6
作者 LI Rufeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1998年第2期207-216,共10页
Abstract: This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ag... Abstract: This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ages of the established Middle and Upper Proterozoic sequence stratigraphic framework in the Ming Tombs area lying in western Yanshan Mountain of Beijing. Besides, sketchy determination of δ13C and δ18O was also performed for other formations and members. The analytical results show the following: under the condition of clear-water carbonate sediments, δ13C and δ18O, featuring smaller variation of δ13C but larger variation of δ18O, can well delineate the relative change of sea level, which reflects the difference of primary sedimentary settings; in the presence of terrigenous substances, δ13C values vary greatly while δ18O slightly; the carbon and oxygen isotopes show marked changes at sequence boundaries. Besides, particular patterns can be found in regard to the distribution of carbon and oxygen isotopes within the sequences. 展开更多
关键词 Ming Tombs in the western Yanshan Mountains of Beijing Middle and Upper Proterozoic sequence stratigraphy carbon and oxygen isotopes
在线阅读 下载PDF
Hydrogen and Oxygen Isotopes of Fluid Inclusion in Halite,Northern Shaanxi Salt Basin China
7
作者 DING Ting LIU Chenlin ZHAO Yanjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期213-213,共1页
The Ordovician was an important transitional period for global climate and organic evolution,the global was in the flood and glacial,Onganism was extinction(Zhan,2007;Trotter et al.,2008;Axel et al.,2010).Under the in... The Ordovician was an important transitional period for global climate and organic evolution,the global was in the flood and glacial,Onganism was extinction(Zhan,2007;Trotter et al.,2008;Axel et al.,2010).Under the influence 展开更多
关键词 Hydrogen and oxygen isotopes of Fluid Inclusion in Halite Northern Shaanxi Salt Basin China
在线阅读 下载PDF
Sources and transformations of nitrite in the Amundsen Sea in summer 2019 and 2020 as revealed by nitrogen and oxygen isotopes 被引量:3
8
作者 Yangjun Chen Jinxu Chen +4 位作者 Yi Wang You Jiang Minfang Zheng Yusheng Qiu Min Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第4期16-24,共9页
In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of n... In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean.We found that primary nitrite maxima(PNMs)are widely present in the Amundsen Sea,where the depth of occurrence deepens from east to west and nitrite concentrations increases.Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation.More importantly,the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal,and their depth profiles are mirror symmetrical.Isotopic anomalies exhibit spatial variations,with central surface water having the lowest nitrogen isotope composition(−89.9‰±0.2‰)and western surface water having the highest oxygen isotope composition(63.3‰±0.3‰).Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies,as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects.This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea.Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle.Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean. 展开更多
关键词 nitrogen isotope oxygen isotope NITRITE Amundsen Sea
在线阅读 下载PDF
Relationships between the Oxygen Isotopes in East Asian Stalagmites and Large-Scale Atmospheric and Oceanic Modes 被引量:3
9
作者 JING Yuan-Yuan LI Shuanglin +1 位作者 WAN Jiang-Hua LUO Fei-Fei 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期540-545,共6页
The stalagmite δ18O record is known to be associated with the climate, but the specifics of the relationship remain unclear. It may not represent variation in air temperature or precipitation, but instead reflect int... The stalagmite δ18O record is known to be associated with the climate, but the specifics of the relationship remain unclear. It may not represent variation in air temperature or precipitation, but instead reflect integral changes of monsoon circulation, especially water vapor sources(the so-called "circulation effect"). Since large-scale atmospheric-oceanic modes such as the Atlantic Multidecadal Oscillation(AMO), Pacific Decadal Oscillation(PDO), and North Atlantic Oscillation(NAO) exert significant effects on Asian monsoon, in this paper the authors investigate the relationships of the East Asian stalagmite δ18O record with these modes. The last three centuries form the focus of our study, for which the authors use reconstructed as well as instrumental data. Considering the impacts of human activity, our analysis is conducted with respect to two periods—the pre- and post-industrial periods. The results show significant lead-lag connections: a positive correlation peaks when the PDO leads East Asian stalagmite δ18O by 3 years, which is persistent over the past 300 years; while the relationships of the AMO and NAO with the East Asian stalagmite δ18O record show significant differences in the post-industrial relative to the pre-industrial period. This implies that the East Asian stalagmite δ18O record may primarily reflect the PDO signal. 展开更多
关键词 STALAGMITE oxygen isotope large-scale circulation lead-lag correlation East Asian climate
在线阅读 下载PDF
Sulfur and Oxygen Isotopes of Sulfate Extracted from Early Cambrian Phosphorite Nodules: Implications for Marine Redox Evolution in the Yangtze Platform 被引量:2
10
作者 Wenlang Qiao Xianguo Lang +4 位作者 Yongbo Peng Kaiyuan Jiang Wu Chen Kangjun Huang Bing Shen 《Journal of Earth Science》 SCIE CAS CSCD 2016年第2期170-179,共10页
Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite pre... Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite precipitation requires special oceanographic and geochemical conditions, thus the origin of the Niutitang phosphorite nodules may provide valuable information about the ocean chemistry in the Early Cambrian. In this study, we measured sulfur and oxygen isotopic compositions of sulfate extracted from phosphorite nodules collected from the basal Niutitang Formation. Phosphorite associated sulfate(PAS) is a trace amount of sulfate that incorporates into crystal lattice during phosphorite precipitation, accordingly PAS records the geochemical signals during phosphorite nodule formation. Sulfur isotopic composition of PAS(δ^(34)S_(PAS)) ranges from-1.16‰ to +24.48‰(mean=+8.19‰, n=11), and oxygen isotopic value(δ^(18)O_(PAS)) varies between-5.3‰ and +26.3‰(mean=+7.0‰, n=8). Most phosphorite nodules have low δ^(34)SPAS and low δ^(18)O_(PAS) values, suggesting PAS mainly derived from anaerobic oxidation of H_2S within suboxic sediment porewater. We propose that phosphate was delivered to the Yangtze Platform by a series of upwelling events, and was scavenged from seawater with the precipitation of FeOOH. The absorbed phosphate was released into suboxic porewater by the reduction of FeOOH at the oxic-suboxic redox boundary in sediments, and phosphorite nodule precipitated by the reaction of phosphate with Ca^(2+) diffused from the overlying seawater. The platform-wide deposition of phosphorite nodules in the basal Niutitang Formation implies the bottom water might be suboxic or even oxic, at least sporadically, in Early Cambrian. We speculate that the intensified ocean circulation as evident with frequent occurrences of upwelling events might be the primary reason for the episodic oxidation of the Yangtze Platform in Early Cambrian. 展开更多
关键词 phosphorite nodules Niutitang Formation phosphorite associated sulfate sulfurisotope oxygen isotope.
原文传递
Ore genesis of Badi copper deposit, northwest Yunnan Province, China: evidence from geology, fluid inclusions, and sulfur, hydrogen and oxygen isotopes 被引量:1
11
作者 Hejun Yin Jianguo Huang Tao Ren 《Acta Geochimica》 EI CAS CSCD 2018年第4期559-570,共12页
The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and dau... The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit. 展开更多
关键词 Badi copper deposit Fluid inclusion Sulfurisotope Hydrogen and oxygen isotope Ore genesis
在线阅读 下载PDF
Characteristics and Significance of Carbon and Oxygen Isotopic Compositions of the PTB Boundary in Haidai Section,Xuanwei Area of China
12
作者 Chenming Liu Demin Yang Zhengqin Na 《Journal of Environmental & Earth Sciences》 2025年第5期203-214,共12页
The End-Permian mass extinction(EPME),Earth’s most severe biocrisis,occurred proximal to the Permian-Triassic Boundary(PTB),with marine ecosystems experiencing catastrophic collapse.This study employs stable carbon(... The End-Permian mass extinction(EPME),Earth’s most severe biocrisis,occurred proximal to the Permian-Triassic Boundary(PTB),with marine ecosystems experiencing catastrophic collapse.This study employs stable carbon(δ^(13)C)and oxygen isotopes from marine carbonates in the Haidai Section(Xuanwei,northeastern Yunnan)to decipher paleoenvironmental drivers.The well-preserved stratigraphic sequence encompasses the Upper Permian(Yangxin and Xuanwei Formations)transitioning into the Lower Triassic(Feixianguan and Jialingjiang Formations),providing a continuous marine sedimentary archive.A marked negativeδ^(13)C excursion(-9.66‰V-PDB)occurs at the PTB,initiating from+0.82‰with subsequent gradual recovery.This geochemical signature correlates with:90%reduction in primary productivity Biodiversity collapse exhibiting cluster extinction patterns Prolonged suppression of ecological recovery Concurrently,reconstructed seawater temperatures reveal extreme thermal fluctuations,surging from 23℃to 32℃at the PTB before precipitously declining to 16℃.These perturbations demonstrate coupled biogeochemical dynamics wherein:•Carbon cycle destabilization disrupted nutrient fluxes.•Temperature oscillations exceeded marine taxa thermal tolerances.•Synergistic environmental stresses amplified extinction selectivity.Theδ^(13)C-temperature covariance(r^(2)=0.085)establishes mechanistic linkages between physicochemical perturbations and biotic responses.Our findings demonstrate that the EPME was driven by positive feedback loops in which:Volcanic CO₂emissions triggered carbonate saturation decline Thermal stratification exacerbated anoxia Biogeochemical cycling perturbations suppressed primary producers This integrated geochemical record from the Haidai Section provides critical insights into environment-organism coevolution during Phanerozoic Earth’s most profound mass extinction. 展开更多
关键词 Carbon and oxygen Isotope Northeastern Yunnan Xuanwei PTB ELIP Mass Extinction
在线阅读 下载PDF
Experimental heating of CI chondrite:Empirical constraints on the evolution of micrometeorite O-isotopes during atmospheric entry
13
作者 N.G.Rudraswami M.D.Suttle +3 位作者 Yves Marrocchi M.Pandey Laurent Tissandier Johan Villeneuve 《Geoscience Frontiers》 2025年第3期409-423,共15页
Extraterrestrial dust exhibits a wide range of textural,chemical and oxygen isotopic compositions due to the heterogeneity of their precursors and modification during atmospheric entry.Experimental heating provides an... Extraterrestrial dust exhibits a wide range of textural,chemical and oxygen isotopic compositions due to the heterogeneity of their precursors and modification during atmospheric entry.Experimental heating provides an opportunity to investigate the relationship between thermal processing and micrometeorite composition for a known precursor material.We conducted experiments to simulate the atmospheric entry of micrometeorites(MMs)using controlled,short-duration(10-50 s)flash heating(400-1600℃)of CI chondrite chips(<1500µm)in atmospheric air(1 bar,21%O2)combined with microanalysis(textures,chemical and isotopic compositions)of the experimental products.The heated chips closely resemble natural samples,with materials similar to unmelted MMs,partially melted(scoriaceous)MMs and fully melted cosmic spherules produced.We reproduced several key features such as dehydration cracks,magnetite rims,volatile gas release,vesicle formation and coalescence,melting and quench cooling.Our parameter space allows for discriminating peak temperature and heating duration effects.Peak temperature is the first-order control on MM mineralogy,while heating duration controls vesicle coalescence and homogenization.When compared against previous heating experiments,our data demonstrates that CI chondrite dust is more thermally resistant,relative to CM chondrite dust,by approximately+200℃.The 207 measurement of O-isotopes allows,for the first time,petrographic effects(such as volatile degassing and melting)to be correlated against bulk O-isotope evolution.Our results demonstrate findings applicable to CI chondrites and potentially to all fine-grained hydrated carbonaceous chondrite dust grains:(1)O-isotope variations arising during sub-solidus heating are dominated by the release of water from phyllosilicates,forcing the residual MM composition towards its anhydrous precursor composition.(2)Oxygen isotope compositions undergo the most significant changes at supra-solidus temperatures.As previously demonstrated and now empirically confirmed,most of these changes are driven by a mass-dependent fractionation effect caused by evaporation,which shifts residual rock compositions toward heavier values.Mixing with atmospheric air alters compositions toward the terrestrial fractionation line.Notably,these two processes do not begin simultaneously.Our data indicate that at 1200℃,isotopic evolution is dominated by evaporative mass loss.However,at higher temperatures(1400-1600℃),both pronounced evaporation and mixing with atmospheric oxygen become active,resulting in a more complex isotopic signature.(3)The total change in Δ17O during heating up to 1600℃is<3‰and in most scenarios<2‰. 展开更多
关键词 Micrometeorite HEATING oxygen isotope CI chondrite
在线阅读 下载PDF
Factors Controlling Precipitation Stable Isotopes in Qinghai-Tibet Plateau Transitional Area,China
14
作者 LI Zongjie XU Bin +5 位作者 LI Hao FENG Qi LIU Xiaoying LIU Mengqing GUI Juan XUE Jian 《Chinese Geographical Science》 2025年第5期1187-1200,I0009,共15页
In this study,we systematically explored the environmental significance of stable isotope characteristics and the controlling factors of precipitation stable isotopes in the source region of the Three Rivers(SRTR),the... In this study,we systematically explored the environmental significance of stable isotope characteristics and the controlling factors of precipitation stable isotopes in the source region of the Three Rivers(SRTR),the transitional zone of the Qinghai-Tibet Plateau in China.A total of 862 precipitation samples were collected from six fixed-point sampling locations between 2019 and 2021 in the SRTR.In June,the values of hydrogen(δD)and oxygen(δ^(18)O)stable isotopes were most enriched.The deuterium-excess(d-excess)in atmospheric precipitation was>0 in the SRTR;however,the maximum value of d-excess occurred in October.Moreover,the slopes of the local meteoric water line(LMWL)for Dari,Zaduo,Maduo,Qumalai,and Tuotuohe sites were lower than those of the global met-eoric water line(GMWL).In contrast,the slope of the LMWL for Zhimenda was higher than that of the GMWL.The altitude effects of oxygen(δ^(18)O)and hydrogen(δD)isotopes of precipitation were 0.70‰/100 m and 5.22‰/100 m,respectively.When the temperature was≤5℃,there was a significant temperature effect on stable oxygen isotope of precipitation(0.24‰/℃,P<0.05).Furthermore,even a minor increase(1%)in the weight of raindrops after falling results in a 0.82%rise in the evaporation enrichment rate ofδ^(18)O.Success-ive precipitation events also had a substantial influence on precipitation in the transitional region of the Qinghai-Tibet Plateau.The res-ults of this study provide a theoretical basis for revealing the impact mechanism of precipitation in the transitional zone of the Qinghai-Tibet Plateau under a warming climate. 展开更多
关键词 oxygen isotope(δ^(18)O) hydrogen isotope(δD) PRECIPITATION transition region source region of the Three Rivers(SRTR) Qinghai-Tibet Plateau China
在线阅读 下载PDF
Strategies towards robust interpretations of in situ zircon oxygen isotopes 被引量:1
15
作者 Janne Liebmann Christopher L.Kirkland +2 位作者 John B.Cliff Christopher J.Spencer Aaron J.Cavosie 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第2期241-255,共15页
Oxygen isotopes are a versatile tool to address a wide range of questions in the Earth sciences.Applications include geothermometry,paleoclimatology,tracing of geochemical reservoirs,fluid-rock interaction,magmatic pe... Oxygen isotopes are a versatile tool to address a wide range of questions in the Earth sciences.Applications include geothermometry,paleoclimatology,tracing of geochemical reservoirs,fluid-rock interaction,magmatic petrogenesis,and identification of extra-terrestrial materials.Zircon arguably provides one of the most robust records of primary magmatic O isotope ratio due to low diffusion rates in crystalline grains.The ability to correlate zircon O isotopes with temporal and petrogenetic information(e.g.U-Pb geochronology,Lu-Hf isotopes,and trace elements)makes this mineral a key archive for understanding Earth’s crustal evolution.Consequently,zircon O isotope geochemistry has found widespread usage to address fundamental questions across the earth and planetary sciences.The general apparent ease of O isotopic acquisition through the advancement of rapid in situ techniques(i.e.secondary ion mass spectrometry;SIMS)and associated dedicated national laboratories has led to the generation of large O isotopic data sets of variable quality,highlighting the importance of a coherent workflow for data collection,reduction,and presentation.This paper presents a set of approaches for measurement,assessment,and reporting of zircon O isotope data.The focus in this contribution is on in situ analysis via secondary ion mass spectrometry using large geometry instruments,but other commonly used techniques are briefly reviewed for context.This work aims to provide an analytical framework necessary for geologically meaningful interpretation of O isotope data.In addition,we describe inherent geological(e.g.radiation-induced disturbance of the zircon O isotopic system)and analytical(e.g.fractionation due to sample topography effects)challenges and outline means to identify and avoid such issues as a prerequisite to the generation of robust primary O isotopic signatures for geological interpretation. 展开更多
关键词 In situ oxygen isotopes ZIRCON SIMS Secondary ion mass spectrometry Off-mount standard
在线阅读 下载PDF
Origin of the Yueguang gold deposit in Xinhua, Hunan Province, South China: insights from fl uid inclusion and hydrogen–oxygen stable isotope analysis
16
作者 Hongxin Fan Qiang Wang +2 位作者 Yulong Yang Yao Tang Hao Zou 《Acta Geochimica》 EI CAS CSCD 2024年第2期235-254,共20页
The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,w... The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province. 展开更多
关键词 Hunan province Yueguang gold deposit Fluid inclusions Hydrogen–oxygen isotopes Laser Raman Fluid immiscibility Orogenic gold deposit
在线阅读 下载PDF
Oxygen and Hydrogen Isotopes of Waters in the Ordos Basin,China:Implications for Recharge of Groundwater in the North of Cretaceous Groundwater Basin 被引量:10
17
作者 YANG Yuncheng SHEN Zhaoli +4 位作者 WENG Dongguang HOU Guangcai ZHAO Zhenhong WANG Dong PANG Zhonghe 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期103-113,共11页
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic... Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of-7.8‰ and -53.0‰ for δ^18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from -10.6‰ to -6.0‰ with an average of-8.4‰ for δ^18O and from -85‰ to -46‰ with an average of-63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from -11.6‰ to -8.8‰ with an average of -10.2‰ for δ^18O and from -89‰ to -63‰ with an average of -76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of ^14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater. 展开更多
关键词 GROUNDWATER lake water oxygen and hydrogen isotopes precipitation Ordos Basin
在线阅读 下载PDF
Estimating distribution of water uptake with depth of winter wheat by hydrogen and oxygen stable isotopes under different irrigation depths 被引量:10
18
作者 GUO Fei MA Juan-juan +3 位作者 ZHENG Li-jian SUN Xi-huan GUO Xiang-hong ZHANG Xue-lan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第4期891-906,共16页
Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to invest... Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency. 展开更多
关键词 hydrogen and oxygen stable isotopes multisource linear mixing model winter wheat distribution of wateruptake with depth
在线阅读 下载PDF
The photosynthetic oxygen evolution does not exclude the important role and contribution of bicarbonate photolysis
19
作者 Yanyou Wu Shaogang Guo 《Acta Geochimica》 EI CAS CSCD 2024年第1期174-179,共6页
Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical proce... Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical process in nature that can convert light energy into chemical energy. Some heavy oxygen isotopic(^(18)O) labeling experiments have"conclusively" demonstrated that the oxygen released by photosynthesis comes only from water and are written into textbooks. However, it is not difficult to find that bicarbonate has never been excluded from the direct substrate of photosynthesis from beginning to end during the history of photosynthesis research. No convincing mechanism can be used to explain photosynthetic oxygen evolution solely from water photolysis. The bicarbonate effect, the Dole effect, the thermodynamic convenience of bicarbonate photolysis, the crystal structure characteristics of photosystem Ⅱ, and the reinterpretation of heavy oxygen isotopic labeling(^(18)O)experiments all indicate that the photosynthetic oxygen evolution does not exclude the important role and contribution of bicarbonate photolysis. The recently proposed view that bicarbonate photolysis is the premise of water photolysis, bicarbonate photolysis and water photolysis work together with a 1:1(mol/mol) stoichiometric relationship, and the stoichiometric relationship between oxygen and carbon dioxide released during photosynthetic oxygen evolution is also 1:1, has excellent applicability and objectivity, which can logically and reasonably explain the precise coordination between light and dark reactions during photosynthesis, the bicarbonate effect, the Dole effect, the Kok cycle and the neutrality of water and carbon in nature.This is of great significance for constructing the bionic artificial photosynthetic reactors and scientifically answering the question of the source of elemental stoichiometric relationships in nature. 展开更多
关键词 Bicarbonate effect Dole effect Kok cycle Heavy oxygen isotope Artificial photosynthetic reactor
在线阅读 下载PDF
Disentangling the contributing components of stream water by using environmental tracers
20
作者 Abul Amir KHAN Naresh Chandra PANT 《Journal of Mountain Science》 2025年第1期260-277,共18页
Identifying the various components contributing to river discharge can be challenging.This study relies on stable isotopes and electrical conductivity(EC)of water as tracers to distinguish the different components con... Identifying the various components contributing to river discharge can be challenging.This study relies on stable isotopes and electrical conductivity(EC)of water as tracers to distinguish the different components contributing to total river discharge.Additionally,we have made an effort to comprehend the processes that may influence glacier ice melt as well as the limits of oxygen-based hydrograph separation.Two distinct geographic domains in terms of climates and topographies were examined.The first study site represents the upper Ganga catchment(central Himalaya),while the second site is located in the Chandra sub-basin in western Himalaya.Errors in estimating the proportion of glacier melt in isotope mixing model are likely if end-member isotopic compositions,are not well defined,particularly for rainfall.Hydrograph separation results indicate that snowmelt is the largest contributor to total river flow in both regions.The contribution of snowmelt to the total runoff of the upper Ganga ranged from~60%to 70%.The estimated contributions of glacier melt varied from 36%to 63%in upper Ganga headwater to 6%to 15%at Devprayag and~8%at Rishikesh.In the Hamtah River,glacier and snowmelt contributions,quantified using a two-component mixing model,ranged from 10%to 14%during the pre-and postmonsoon seasons of 2013.The significant spatial and temporal variability,coupled with overlapping isotopic signatures,suggests complex glacio-fluvial interactions in these catchments.Local slow-moving air masses with whirling motion closer to the study area irrespective of the direction,and air parcels coming through Bay of Bengal branch are characterized by depleted isotopic rainfall compared to air masses originating from the Arabian Sea. 展开更多
关键词 SNOWMELT Glacier melt oxygen isotopes Bhagirathi River Alaknanda River Hamtah
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部