期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rigid ligand confined rapid synthesis of dual single-atomic sites on carbon black for enhanced oxygen depolarized cathodes
1
作者 Chengbin Wang Mengke Li +6 位作者 Ping Li Kaicai Fan Porun Liu Tianrong Zhan Bin Li Lingbo Zong Lei Wang 《Nano Research》 2026年第1期206-215,共10页
Oxygen reduction reaction(ORR)is crucial for Znair batteries,while also serves as a core electrochemical process in oxygen depolarized cathodes(ODCs)for chlor-alkali electrolysis.The lack of cost-effective,highly acti... Oxygen reduction reaction(ORR)is crucial for Znair batteries,while also serves as a core electrochemical process in oxygen depolarized cathodes(ODCs)for chlor-alkali electrolysis.The lack of cost-effective,highly active ORR electrocatalysts with superior kinetics hinders progress in this field.Herein,we report the Fe/Ni dual single-atomic sites anchored by commercial carbon black(Fe/Ni-N/CB)using rigid ligand confined and high-temperature shock(HTS)strategy in less than 0.5 s.Theoretical calculation reveals that singleatomic Fe is the real active site.Single-atomic Fe and Ni species in Fe/Ni-N/CB synergistically accelerate the kinetics of ORR by reducing the energy barrier of the rate-determining step.A large half-wave potential(E_(1/2))of 0.907 V is achieved in 0.1 M KOH aqueous solution.The assembled aqueous Zn-air battery(A-ZAB)with Fe/Ni-N/CB cathode presents remarkable charge-discharge cycling stability for over 650 h without voltage gap degradation.The quasi-solid-state Zn-air battery(QSS-ZAB)exhibits excellent reversibility over a 150-h operation at 0.5 mA·cm^(-2) with negligible energy conversion efficiency recession.Impressively,Fe/Ni-N/CB||RuO_(2)chloralkali flow cell exhibits a low cell voltage of 1.60 V at a large current density of 300 mA·cm^(-2) at 80℃,and demonstrates exceptional durability with 7% current density decay over 150 h of continuous operation at 100 mA·cm^(-2).Fe/Ni-N/CB||RuO_(2)achieves near-ideal caustic current efficiency(~97.2%)at the current density of 300 mA·cm^(-2).This work provides a rapid and economical synthesis technique for the synthesis of catalysts at the atomic scale while demonstrating significant potential for application in energy-saving chlor-alkali electrolyzer. 展开更多
关键词 rigid ligand high-temperature shock dual single-atomic sites oxygen depolarized cathode chlor-alkali electrolysis Zn-air battery
原文传递
Recent progress of antipoisoning catalytic materials for high temperature proton exchange membrane fuel cells doped with phosphoric acid
2
作者 Dongping Xue Jia-Nan Zhang 《Industrial Chemistry & Materials》 2024年第2期173-190,共18页
High-temperature proton exchange membrane fuel cells(HT-PEMFCs)have the unique advantages of fast electrode reaction kinetics,high CO tolerance,and simple water and thermal management at their operating temperature(12... High-temperature proton exchange membrane fuel cells(HT-PEMFCs)have the unique advantages of fast electrode reaction kinetics,high CO tolerance,and simple water and thermal management at their operating temperature(120-300℃),which can effectively solve the hydrogen source problem and help achieve the dual-carbon goal.The catalysts in HT-PEMFCs are mainly Pt-based catalysts,which have good catalytic activity in the oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR).However,in HT-PEMFCs,the high load of platinum-based catalysts to alleviate the limitation of strong adsorption of phosphoric acid(PA)on the platinum surface on activity expression leads to high cost,insufficient activity,decreased activity under long-term operation and carrier corrosion.The present review mainly summarizes the latest research progress of HT-PEMFCs catalysts,systematically analyzes the application of precious metal and non-precious metal catalysts in HT-PEMFCs,and unveils the structure-activity relationship and anti-PA poisoning mechanism.The current challenges and opportunities faced by HT-PEMFCs are discussed,as well as possible future solutions.It is believed that this review can provide some inspiration for the future development of high-performance HT-PEMFC catalysts. 展开更多
关键词 High-temperature proton exchange membrane fuel cells Cathodic oxygen reduction Anti-phosphoric acid poisonous Pt group metal catalysts Non-precious metal catalysts
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部