Oxygen reduction reaction(ORR)is crucial for Znair batteries,while also serves as a core electrochemical process in oxygen depolarized cathodes(ODCs)for chlor-alkali electrolysis.The lack of cost-effective,highly acti...Oxygen reduction reaction(ORR)is crucial for Znair batteries,while also serves as a core electrochemical process in oxygen depolarized cathodes(ODCs)for chlor-alkali electrolysis.The lack of cost-effective,highly active ORR electrocatalysts with superior kinetics hinders progress in this field.Herein,we report the Fe/Ni dual single-atomic sites anchored by commercial carbon black(Fe/Ni-N/CB)using rigid ligand confined and high-temperature shock(HTS)strategy in less than 0.5 s.Theoretical calculation reveals that singleatomic Fe is the real active site.Single-atomic Fe and Ni species in Fe/Ni-N/CB synergistically accelerate the kinetics of ORR by reducing the energy barrier of the rate-determining step.A large half-wave potential(E_(1/2))of 0.907 V is achieved in 0.1 M KOH aqueous solution.The assembled aqueous Zn-air battery(A-ZAB)with Fe/Ni-N/CB cathode presents remarkable charge-discharge cycling stability for over 650 h without voltage gap degradation.The quasi-solid-state Zn-air battery(QSS-ZAB)exhibits excellent reversibility over a 150-h operation at 0.5 mA·cm^(-2) with negligible energy conversion efficiency recession.Impressively,Fe/Ni-N/CB||RuO_(2)chloralkali flow cell exhibits a low cell voltage of 1.60 V at a large current density of 300 mA·cm^(-2) at 80℃,and demonstrates exceptional durability with 7% current density decay over 150 h of continuous operation at 100 mA·cm^(-2).Fe/Ni-N/CB||RuO_(2)achieves near-ideal caustic current efficiency(~97.2%)at the current density of 300 mA·cm^(-2).This work provides a rapid and economical synthesis technique for the synthesis of catalysts at the atomic scale while demonstrating significant potential for application in energy-saving chlor-alkali electrolyzer.展开更多
High-temperature proton exchange membrane fuel cells(HT-PEMFCs)have the unique advantages of fast electrode reaction kinetics,high CO tolerance,and simple water and thermal management at their operating temperature(12...High-temperature proton exchange membrane fuel cells(HT-PEMFCs)have the unique advantages of fast electrode reaction kinetics,high CO tolerance,and simple water and thermal management at their operating temperature(120-300℃),which can effectively solve the hydrogen source problem and help achieve the dual-carbon goal.The catalysts in HT-PEMFCs are mainly Pt-based catalysts,which have good catalytic activity in the oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR).However,in HT-PEMFCs,the high load of platinum-based catalysts to alleviate the limitation of strong adsorption of phosphoric acid(PA)on the platinum surface on activity expression leads to high cost,insufficient activity,decreased activity under long-term operation and carrier corrosion.The present review mainly summarizes the latest research progress of HT-PEMFCs catalysts,systematically analyzes the application of precious metal and non-precious metal catalysts in HT-PEMFCs,and unveils the structure-activity relationship and anti-PA poisoning mechanism.The current challenges and opportunities faced by HT-PEMFCs are discussed,as well as possible future solutions.It is believed that this review can provide some inspiration for the future development of high-performance HT-PEMFC catalysts.展开更多
基金supported financially by the National Natural Science Foundation of China(No.52172208)Taishan Scholar Young Talent Program(No.tsqn202306216)Shandong Excellent Young Scientists Fund Program(Overseas,2023HWYQ‑091).
文摘Oxygen reduction reaction(ORR)is crucial for Znair batteries,while also serves as a core electrochemical process in oxygen depolarized cathodes(ODCs)for chlor-alkali electrolysis.The lack of cost-effective,highly active ORR electrocatalysts with superior kinetics hinders progress in this field.Herein,we report the Fe/Ni dual single-atomic sites anchored by commercial carbon black(Fe/Ni-N/CB)using rigid ligand confined and high-temperature shock(HTS)strategy in less than 0.5 s.Theoretical calculation reveals that singleatomic Fe is the real active site.Single-atomic Fe and Ni species in Fe/Ni-N/CB synergistically accelerate the kinetics of ORR by reducing the energy barrier of the rate-determining step.A large half-wave potential(E_(1/2))of 0.907 V is achieved in 0.1 M KOH aqueous solution.The assembled aqueous Zn-air battery(A-ZAB)with Fe/Ni-N/CB cathode presents remarkable charge-discharge cycling stability for over 650 h without voltage gap degradation.The quasi-solid-state Zn-air battery(QSS-ZAB)exhibits excellent reversibility over a 150-h operation at 0.5 mA·cm^(-2) with negligible energy conversion efficiency recession.Impressively,Fe/Ni-N/CB||RuO_(2)chloralkali flow cell exhibits a low cell voltage of 1.60 V at a large current density of 300 mA·cm^(-2) at 80℃,and demonstrates exceptional durability with 7% current density decay over 150 h of continuous operation at 100 mA·cm^(-2).Fe/Ni-N/CB||RuO_(2)achieves near-ideal caustic current efficiency(~97.2%)at the current density of 300 mA·cm^(-2).This work provides a rapid and economical synthesis technique for the synthesis of catalysts at the atomic scale while demonstrating significant potential for application in energy-saving chlor-alkali electrolyzer.
基金financially supported by the Key projects of National Natural Science Foundation of China(U22A20107)the key projects of the Henan Provincial Science and Technology R&D Program Joint Fund(222301420001)+1 种基金the Distinguished Young Scholars Innovation Team of Zhengzhou University(32320275)Higher Education Teaching Reform Research and Practice Project of Henan Province(2021SJGLX093Y).
文摘High-temperature proton exchange membrane fuel cells(HT-PEMFCs)have the unique advantages of fast electrode reaction kinetics,high CO tolerance,and simple water and thermal management at their operating temperature(120-300℃),which can effectively solve the hydrogen source problem and help achieve the dual-carbon goal.The catalysts in HT-PEMFCs are mainly Pt-based catalysts,which have good catalytic activity in the oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR).However,in HT-PEMFCs,the high load of platinum-based catalysts to alleviate the limitation of strong adsorption of phosphoric acid(PA)on the platinum surface on activity expression leads to high cost,insufficient activity,decreased activity under long-term operation and carrier corrosion.The present review mainly summarizes the latest research progress of HT-PEMFCs catalysts,systematically analyzes the application of precious metal and non-precious metal catalysts in HT-PEMFCs,and unveils the structure-activity relationship and anti-PA poisoning mechanism.The current challenges and opportunities faced by HT-PEMFCs are discussed,as well as possible future solutions.It is believed that this review can provide some inspiration for the future development of high-performance HT-PEMFC catalysts.