Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and of...Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization.展开更多
The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a serie...The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs.展开更多
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-...Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.展开更多
High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-poly...High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-polyphenol coordination system to prepare HEA NPs enclosed in N-doped carbon(FeCoNiCrMn)with great potential for catalyzing oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The unique high-entropy structural characteristics in FeCoNiCrMn facilitate effective interplay between metal species,leading to improved ORR(E_(1/2)=0.89 V)and OER(η=330 mV,j=10 mA·cm^(−2))activity.Additionally,FeCoNiCrMn exhibits excellent open-circuit voltage(1.523 V),power density(110 mW·cm^(−2))and long-term durability,outperforming Pt/C+IrO_(2) electrodes as a cathode catalyst in Zn-air batteries(ZABs).Such polyphenol-assisted alloying method broadens and simplifies the development of HEA electrocatalysts for high-performance ZABs.展开更多
Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and...Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced.展开更多
The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically appl...The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically applied.The traditional lattice oxygen oxidation mechanism(LOM)offers an advantageous route by circumventing the formation of M-OOH^(*)in the adsorption evolution mechanism(AEM),thus enhancing the reaction kinetics of the OER but resulting in possible structural destabilization due to the decreased M–O bond order.Fortunately,the asymmetry of tetrahedral and octahedral sites in transition metal spinel oxides permits the existence of non-bonding oxygen,which could be activated by rational band structure design for direct O-O coupling,where the M–O bond maintains its initial bond order.Here,non-bonding oxygen was introduced into NiFe_(2)O_(4)via annealing in an oxygen-deficient atmosphere.Then,in-situ grown sulfate species on octahedral nickel sites significantly improved the reactivity of the non-bonding oxygen electrons,thereby facilitating the transformation of the redox center from metal to oxygen.LOM based on non-bonding oxygen(LOMNB)was successfully activated within NiFe_(2)O_(4),exhibiting a low overpotential of 206 mV to achieve a current density of 10 mA cm^(-2)and excellent durability of stable operation for over 150 h.Additionally,catalysts featuring varying band structures were synthesized for comparative analysis,and it was found that the reversible redox processes of non-bonding oxygen and the accumulation of non-bonding oxygen species containing 2p holes are critical prerequisites for triggering and sustaining the LOMNB pathway in transition metal spinel oxides.These findings may provide valuable insights for the future development of spinel-oxide-based LOM catalysts.展开更多
This article comments on the research by Zhang et al on the role of advanced heart failure and transplant teams in extracorporeal membrane oxygenation(ECMO)management.The study by Zhang et al indicates that direct adv...This article comments on the research by Zhang et al on the role of advanced heart failure and transplant teams in extracorporeal membrane oxygenation(ECMO)management.The study by Zhang et al indicates that direct advanced heart failure and transplant involvement improves survival in ECMO patients,especially those on veno-arterial ECMO.However,the optimal approach varies due to multiple factors.This article discusses the clinical implications,research design limitations,and future directions to enhance ECMO care.展开更多
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy...Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.展开更多
Singlet oxygen(^(1)O_(2)),as an electrophilic oxidant,is essential for the selective water decontamination of pollutants from water.Herein,we showcase a high-performing electrocatalytic filtration system composed of c...Singlet oxygen(^(1)O_(2)),as an electrophilic oxidant,is essential for the selective water decontamination of pollutants from water.Herein,we showcase a high-performing electrocatalytic filtration system composed of carbon nanotubes functionalized with CoFe alloy nanoparticles(CoFeCNT)to selectively facilitate the electrochemical activation of O_(2)to^(1)O_(2).Benefiting from the prominently featured bimetal active sites of CoFeCNT,nearly complete production of^(1)O_(2)is achieved by the electrocatalytic activation of O_(2).Additionally,the proposed system exhibits a consistent pollutant removal efficiency>90%in a flow-through reactor over 48 h of continuous operation without a noticeable decline in performance,highlighting the dependable stability of the system for practical applications.The flow-through configuration demonstrates a striking 8-fold enhancement in tetracycline oxidation compared to a conventional batch reactor.This work provides a molecular level understanding of the oxygen reduction reaction,showing promising potential for the selective removal of emerging organic contaminants from water.展开更多
To build a thrombosis risk assessment model applicable to oxygenators and investigate the effects of oxygenator external configuration and membrane filaments macroscopic parameters on the performances of cylindrical o...To build a thrombosis risk assessment model applicable to oxygenators and investigate the effects of oxygenator external configuration and membrane filaments macroscopic parameters on the performances of cylindrical oxygenators.A thrombosis driven by surface contact,shear stress,and anticoagulant drugs,and considering the effects of these factors on platelet,coagulation factor,and hemostatic protein function risk model was developed and validated with clinical oxygenators.The thrombosis model combined with a pressure loss model and an oxygen partial pressure model was used to assess the effect of the external structure and macroscopic parameters of the membrane filaments(height and thickness)on the performance of the cylindrical oxygenator.The cylindrical oxygenator center circular inflow manner and tangential outflow manner from the middle region of the outside benefit the overall performance of the oxygenator(reduced pressure loss and thrombosis risk).Increasing the radial thickness of the oxygenator membrane filaments significantly increased the oxygen exchange ability of the oxygenator and reduced the thrombosis risk compared to increasing the axial height,but with a smaller increase in pressure loss.Contact activation leading to thrombin production contributes significantly to oxygenator thrombosis.The oxygenator has little effect on platelet receptor function.Thrombosis in cylindrical oxygenators tends to form in the flow-flow/border impingement regions because of the high concentration of coagulation factors and long residence times in these regions.A thrombosis risk assessment model applicable to oxygenators was developed.We disclosed the mechanism of the impact of oxygenator external configuration and membrane filaments macroscopic parameters on its internal flow fields,the risk of thrombosis,and the efficiency of gas exchange,which are useful for the design and optimization of cylindrical oxygenators.展开更多
The development of highly efficient non-precious metal-nitrogen-carbon(M-N-C)electrocatalysts is a key scientific issue for improving the performance of metal-air batteries and fuel cells.Due to the symmetric charge d...The development of highly efficient non-precious metal-nitrogen-carbon(M-N-C)electrocatalysts is a key scientific issue for improving the performance of metal-air batteries and fuel cells.Due to the symmetric charge distribution of the traditional M-N_(4)active site,the adsorption energy of the key oxygen intermediates in the process of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is difficult to reach the optimal value,which seriously limits the catalytic efficiency.The core of solving this problem lies in the accurate modulation of the coordination environment of the M-N_(4)site,which can realize the breakthrough improvement of the catalytic performance by synergistically optimizing the geometric configuration and electronic structure.In this paper,we systematically analyze the ORR/OER reaction mechanism and then comprehensively review the four main strategies to optimize the coordination environment of M-N-C:metal site regulation,coordination number engineering,non-metal atom doping,and carbon support regulation.Through an in-depth analysis of the structure-activity relationship between the coordination configuration and catalytic performance,the core challenges faced by current research are pointed out,and future research directions are envisioned.This work aims to provide theoretical references for the directional construction of highly efficient M-N-C catalysts with optimized coordination environments.展开更多
The authors regret<During the submission process,Hongxiang Zhang and Honggen Peng served as the first and the second corresponding author,respectively.The original manuscript submitted for this paper also listed tw...The authors regret<During the submission process,Hongxiang Zhang and Honggen Peng served as the first and the second corresponding author,respectively.The original manuscript submitted for this paper also listed two co-corresponding authors(Hongxiang Zhang and Honggen Peng).But the corresponding author of Honggen Peng was omitted in the final published manuscript.So,we apply to designate Honggen Peng(penghonggen@ncu.edu.cn)as the second co-corresponding author and the corresponding unit is“a,b">.展开更多
Effective lattice oxygen(Olatt)activation at low temperatures has long been a challenge in catalytic oxidation reactions.Traditional thermal catalytic soot combustion,even with Pt/Pd catalysts,is inefficient at exhaus...Effective lattice oxygen(Olatt)activation at low temperatures has long been a challenge in catalytic oxidation reactions.Traditional thermal catalytic soot combustion,even with Pt/Pd catalysts,is inefficient at exhaust temperatures below 200℃,particularly under conditions of frequent idling.Herein,we report an effective strategy utilizing non-thermal plasma(NTP)to activate Olatt in Ce_(1–x)Co_(x)O_(2–δ)catalysts,achieving dramatic enhancement of the soot combustion rate at low temperatures.At 200℃ and 4.3 W(discharge power,P_(dis)),NTP-Ce_(0.8)Co_(0.2)O_(2–δ)achieved 96.9%soot conversion(X_(C)),99.0%CO_(2) selectivity(S(CO_(2)))and a maximum energy conversion efficiency(Emax)of 14.7 g kWh^(–1).Compared with previously reported results,NTP-Ce_(0.8)Co_(0.2)O_(2–δ)exhibits the highest S(CO_(2))and Emax values.Remarkably,even without heating,X_(C),Emax,and S(CO_(2))reached 92.1%,6.1 g kWh–1,and 97.5%,respectively,at 6.3 W(P_(dis)).The results of characterization and theoretical calculation demonstrated that Co dopes into the CeO_(2) crystal lattice and forms an asymmetric Ce–O–Co structure,making oxygen“easy come,easy go”,thereby enabling the rapid combustion of soot over NTP-Ce_(0.8)Co_(0.2)O_(2–δ).This study highlights the great potential of NTP for activating Olatt and provides valuable insights into the design of efficient NTP-adapted catalysts for oxidation reactions.展开更多
Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong...Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong acid in PEMWE systems pose a major challenge to the stability of electrocatalysts,and the development of efficient and corrosion-resistant catalysts is urgently needed.Currently,iridium(Ir)-based catalysts have gained great attention due to their promising activity and stability,while the extremely low reserves of Ir in the earth seriously hinder the commercialization of PEMWE.Therefore,a systematic understanding of the latest advances in Ir-based catalysts is necessary to guide their rational design to meet the industrial requirements.In this review,the general reaction mechanisms and advanced characterization techniques for mechanism recognition are first introduced.Afterwards,the systematic design strategies and performances of Ir-based catalysts,including metallic Ir,Ir oxides,and Ir-based perovskites,are summarized in detail.Finally,the conclusions,challenges,and prospects for Ir-based electrocatalysts are presented.展开更多
Oxygen(O_(2))is an abundant material with its highly positive redox potential,making it a cost-effective choice for the cathodic active material of aqueous flow batteries(AFBs).However,utilizing O_(2)as an active mate...Oxygen(O_(2))is an abundant material with its highly positive redox potential,making it a cost-effective choice for the cathodic active material of aqueous flow batteries(AFBs).However,utilizing O_(2)as an active material may induce a high overpotential issue for oxygen reduction reaction(ORR).To address this problem,this study proposes a new AFB system employing iron-2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol complex(Fe(BIS-TRIS))and O_(2)as redox couple and cobalt(triisopropanolamine)complex(Co(TiPA))as the redox mediator.Co(TiPA)can mitigate ORR overpotential through a mediated electron transfer(MET)mechanism.More specifically,during the charging step,in the catholyte,Co(II)(TiPA)s are oxidized to Co(III)(TiPA)s at the cathode,while HO_(2)-s are oxidized in the electrolyte tank,producing O_(2).During the discharging step,Co(III)(TiPA)s are reduced to Co(II)(TiPA)s.The resulting Co(II)(TiPA)then chemically reacts with O_(2)in the electrolyte tank,regenerating Co(III)(TiPA).Namely,this cycle ensures that Co(III)(TiPA)is electrochemically reduced to Co(II)(TiPA)at the cathode,while the reduced Co(II)(TiPA)is chemically re-oxidized in the electrolyte tank,effectively mediating electron transfer between electrode and oxygen.This process facilitates ORR without direct electrochemical reaction at the cathode,thereby alleviating its overpotential.UV-Vis spectroscopic analysis verifies that Co(TiPA)spontaneously reacts with O₂and mediates ORR.Fe(BIS-TRIS)-O_(2)AFB maintains 79.1%of its initial capacity over 170 h,demonstrating the feasibility of Co(TiPA)as the redox mediator.However,its structural degradation under oxygen evolution reaction is observed,limiting the long-term stability of Fe(BIS-TRIS)-O_(2)AFB.Thus,its structural modifications or development of alternative redox mediators are required.展开更多
Efficient catalysis of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is essential for the rechargeable zinc-air batteries(R-ZABs).However,challenges remain due to the scarcity of effective bifunc...Efficient catalysis of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is essential for the rechargeable zinc-air batteries(R-ZABs).However,challenges remain due to the scarcity of effective bifunctional electrocatalysts and limited understanding of the structure-activity relationships.Pyrrole-type single-atom catalysts(SACs)with unique electronic structures have emerged as promising electrocatalysts.In this work,we combine density functional theory(DFT)calculations and experimental studies to systematically explore the structure-activity relationships and potential of pyrrole-type transition metal-N_(3)(TM-po-N_(3))as bifunctional catalysts.DFT calculations reveal that differences in the dependence of ORR and OER activities on the free energy of adsorption of reaction intermediates significantly affect the TM-po-N_(3)bifunctional activity and identify magnetic Cu-po-N_(3)as the best candidate.The bifunctional activity of Cu-po-N_(3)originates from interactions between spin-polarized out-of-plane Cu_3d and O_2s+2p orbitals.Theoretical predictions are validated experimentally,showing that the synthesized Cu-SAC/NC exhibits excellent bifunctional performance with a small potential gap of 0.666 V.Additionally,the assembled R-ZABs display a high-power density of 170 mW cm^(-2)and long-term stability,with the charge-discharge voltage gap increasing by only 0.01 V over 240 h.This work provides new insights into the design of efficient bifunctional catalysts.展开更多
Extracorporeal membrane oxygenation(ECMO) has been developed for nearly 70 years,and it is the main technology to treat cardiopulmonary failure and continue to maintain life.As the core component of the ECMO system,th...Extracorporeal membrane oxygenation(ECMO) has been developed for nearly 70 years,and it is the main technology to treat cardiopulmonary failure and continue to maintain life.As the core component of the ECMO system,the gas exchange membrane possesses low gas permeability and plasma leakage at present.In addition,the membrane material exists low blood compatibility,causing the formation of thrombosis.Therefore,the membrane material with high gas permeability and blood compatibility are urgently needed.This paper summarizes the membrane development process,preparation method,and modification method.It provides a new idea for the preparation and coating modification as artificial lung membrane.展开更多
The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the ...The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the intricate relationship between catalytic mechanisms and catalyst design.This review discusses the connotation and cutting-edge progress of traditional mechanisms such as adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM)as well as emerging pathways including oxide path mechanism(OPM),oxo-oxo coupling mechanism(OCM),and intramolecular oxygen coupling mechanism(IMOC)etc.Innovative research progress on the coexistence and transformation of multiple mechanisms is highlighted,and the intrinsic factors that influence these dynamic processes are summarized.Advanced characterization techniques and theoretical modeling are underscored as indispensable tools for revealing these complex interactions.This review provides guiding principles for mechanism-based catalyst design.Finally,in view of the multidimensional challenges currently faced by OER mechanisms,prospects for future research are given to bridge the gap between mechanism innovation and experimental verification and application.This comprehensive review provides valuable perspectives for advancing clean energy technologies and achieving sustainable development.展开更多
Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were...Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were developed for enhancing the degradation of a model pollutant,tetracycline(TC),merely by airborne O_(2).Fh/B(3)NC showed excellent O_(2)activation activity for efficient TC degradation with a apparent TC degradation rate of 5.54,6.88,and 22.15 times that of B(3)NC,Fh,and raw BCs,respectively,where 1O_(2)and H_(2)O_(2)were identified as the dominant ROS for TC degradation.The B incorporation into the carbon lattice of Fh/B(3)NC promoted the generation of electron donors,sp2 C and the reductive B species,hence boosting Fe(III)reduction and 1O_(2)generation.O_(2)adsorption was enhanced due to the positively charged adsorption sites(C-B+and N-C+).And 1O_(2)was generated via Fe(II)catalyzed low-efficient successive one-electron transfer(O_(2)→O_(2)·−→1O_(2),H_(2)O_(2)),as well as biochar catalyzed high-efficient two-electron transfer(O_(2)→H_(2)O_(2)→1O_(2))that does not involve.O_(2)−as the intermediate.Moreover,Fh/B,N co-doped biochar showed a wide pH range,remarkable anti-interference capabilities,and effective detoxification.These findings shed new light on the development of environmentally benign BCs materials capable of degradading organic pollutants.展开更多
The dearth of efficacious and economic bifunctional oxygen electrocatalysts has constituted a significant impediment to the actual implementation of high-performance metal-air batteries.Here,we construct an efficaciou...The dearth of efficacious and economic bifunctional oxygen electrocatalysts has constituted a significant impediment to the actual implementation of high-performance metal-air batteries.Here,we construct an efficacious bifunctional oxygen electrocatalyst ZnFeNiCoCr high-entropy alloy(HEA)nanoparticles for oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)using a facile sol-gel strategy.The synthesized ZnFeNiCoCr HEA exhibits excellent bifunctional properties due to the synergistic effect between the metal elements.The overpotential of 305 mV at 10 mA·cm^(-2)for OER and a half-wave potential of 0.864 V for ORR,which is excellent to that of commercial RuO_(2)and Pt/C.Consequently,ZnFeNiCoCr HEA is utilized as a cathode catalyst for zinc-air batteries.The specific capacity of a zinc-air battery based on this HEA is 743 mAh·g^(-1)and the battery undergoes a continuous charge/discharge cycle for over 400 h.The ZnFeNiCoCr HEA catalyst holds significant application potential in diverse electrochemical energy storage and conversion devices.展开更多
基金supported by Basic Science Research Program(Priority Research Institute)through the NRF of Korea funded by the Ministry of Education(2021R1A6A1A10039823)by the Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(2020R1A6C101B194)。
文摘Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization.
基金Funded by the 111 Project(No.B17034)Open Project of Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle(No.ZDSYS202212)+1 种基金Innovative Research Team Development Program of Ministry of Education of China(No.IRT_17R83)the Science and Technology Project of China Southern Power Grid Co.,Ltd.(No.GDKJXM20222546)。
文摘The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs.
基金financial support of the National Natural Science Foundation of China(No.52472271)the National Key Research and Development Program of China(No.2023YFE0115800)。
文摘Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.
基金supported by the Fundamental Research Funds for the Central Universities(No.22120230104).
文摘High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-polyphenol coordination system to prepare HEA NPs enclosed in N-doped carbon(FeCoNiCrMn)with great potential for catalyzing oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The unique high-entropy structural characteristics in FeCoNiCrMn facilitate effective interplay between metal species,leading to improved ORR(E_(1/2)=0.89 V)and OER(η=330 mV,j=10 mA·cm^(−2))activity.Additionally,FeCoNiCrMn exhibits excellent open-circuit voltage(1.523 V),power density(110 mW·cm^(−2))and long-term durability,outperforming Pt/C+IrO_(2) electrodes as a cathode catalyst in Zn-air batteries(ZABs).Such polyphenol-assisted alloying method broadens and simplifies the development of HEA electrocatalysts for high-performance ZABs.
文摘Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced.
文摘The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically applied.The traditional lattice oxygen oxidation mechanism(LOM)offers an advantageous route by circumventing the formation of M-OOH^(*)in the adsorption evolution mechanism(AEM),thus enhancing the reaction kinetics of the OER but resulting in possible structural destabilization due to the decreased M–O bond order.Fortunately,the asymmetry of tetrahedral and octahedral sites in transition metal spinel oxides permits the existence of non-bonding oxygen,which could be activated by rational band structure design for direct O-O coupling,where the M–O bond maintains its initial bond order.Here,non-bonding oxygen was introduced into NiFe_(2)O_(4)via annealing in an oxygen-deficient atmosphere.Then,in-situ grown sulfate species on octahedral nickel sites significantly improved the reactivity of the non-bonding oxygen electrons,thereby facilitating the transformation of the redox center from metal to oxygen.LOM based on non-bonding oxygen(LOMNB)was successfully activated within NiFe_(2)O_(4),exhibiting a low overpotential of 206 mV to achieve a current density of 10 mA cm^(-2)and excellent durability of stable operation for over 150 h.Additionally,catalysts featuring varying band structures were synthesized for comparative analysis,and it was found that the reversible redox processes of non-bonding oxygen and the accumulation of non-bonding oxygen species containing 2p holes are critical prerequisites for triggering and sustaining the LOMNB pathway in transition metal spinel oxides.These findings may provide valuable insights for the future development of spinel-oxide-based LOM catalysts.
基金Supported by National Natural Science Foundation of China,No.82200353Jiangsu Province Double Innovation Doctoral Program,No.JSSCBS20221948+3 种基金Suzhou Gusu Health Talent Program,No.(2022)043Suzhou Gusu Health Talent Plan Talent Research Project,No.GSWS2022014Jiangsu Province College Students’Innovation and Entrepreneurship Training Program Project,No.202410285087Zand“Boxi”Talent Casting Plan of the First Affiliated Hospital of Soochow University。
文摘This article comments on the research by Zhang et al on the role of advanced heart failure and transplant teams in extracorporeal membrane oxygenation(ECMO)management.The study by Zhang et al indicates that direct advanced heart failure and transplant involvement improves survival in ECMO patients,especially those on veno-arterial ECMO.However,the optimal approach varies due to multiple factors.This article discusses the clinical implications,research design limitations,and future directions to enhance ECMO care.
文摘Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1401300)the National Natural Science Foundation of China(No.52170068).
文摘Singlet oxygen(^(1)O_(2)),as an electrophilic oxidant,is essential for the selective water decontamination of pollutants from water.Herein,we showcase a high-performing electrocatalytic filtration system composed of carbon nanotubes functionalized with CoFe alloy nanoparticles(CoFeCNT)to selectively facilitate the electrochemical activation of O_(2)to^(1)O_(2).Benefiting from the prominently featured bimetal active sites of CoFeCNT,nearly complete production of^(1)O_(2)is achieved by the electrocatalytic activation of O_(2).Additionally,the proposed system exhibits a consistent pollutant removal efficiency>90%in a flow-through reactor over 48 h of continuous operation without a noticeable decline in performance,highlighting the dependable stability of the system for practical applications.The flow-through configuration demonstrates a striking 8-fold enhancement in tetracycline oxidation compared to a conventional batch reactor.This work provides a molecular level understanding of the oxygen reduction reaction,showing promising potential for the selective removal of emerging organic contaminants from water.
基金supported by the National Key R&D Program of China(Grant Nos.2020YFC0862904,2020YFC0862900,and 2020YFC0862902)the National Natural Science Foundation of China(Grant Nos.12372300,U23A20486,and 32071311)the Fundamental Research Funds for the Central Universities,and the Academic Excellence Foundation of BUAA for PhD Students.
文摘To build a thrombosis risk assessment model applicable to oxygenators and investigate the effects of oxygenator external configuration and membrane filaments macroscopic parameters on the performances of cylindrical oxygenators.A thrombosis driven by surface contact,shear stress,and anticoagulant drugs,and considering the effects of these factors on platelet,coagulation factor,and hemostatic protein function risk model was developed and validated with clinical oxygenators.The thrombosis model combined with a pressure loss model and an oxygen partial pressure model was used to assess the effect of the external structure and macroscopic parameters of the membrane filaments(height and thickness)on the performance of the cylindrical oxygenator.The cylindrical oxygenator center circular inflow manner and tangential outflow manner from the middle region of the outside benefit the overall performance of the oxygenator(reduced pressure loss and thrombosis risk).Increasing the radial thickness of the oxygenator membrane filaments significantly increased the oxygen exchange ability of the oxygenator and reduced the thrombosis risk compared to increasing the axial height,but with a smaller increase in pressure loss.Contact activation leading to thrombin production contributes significantly to oxygenator thrombosis.The oxygenator has little effect on platelet receptor function.Thrombosis in cylindrical oxygenators tends to form in the flow-flow/border impingement regions because of the high concentration of coagulation factors and long residence times in these regions.A thrombosis risk assessment model applicable to oxygenators was developed.We disclosed the mechanism of the impact of oxygenator external configuration and membrane filaments macroscopic parameters on its internal flow fields,the risk of thrombosis,and the efficiency of gas exchange,which are useful for the design and optimization of cylindrical oxygenators.
基金supported by the Natural Science Foundation of Hebei Province(no.E2024501010)the National Natural Science Foundation of China(no.52374301)+1 种基金the Shijiazhuang Basic Research Project(no.241790667A)the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(no.22567627H)。
文摘The development of highly efficient non-precious metal-nitrogen-carbon(M-N-C)electrocatalysts is a key scientific issue for improving the performance of metal-air batteries and fuel cells.Due to the symmetric charge distribution of the traditional M-N_(4)active site,the adsorption energy of the key oxygen intermediates in the process of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is difficult to reach the optimal value,which seriously limits the catalytic efficiency.The core of solving this problem lies in the accurate modulation of the coordination environment of the M-N_(4)site,which can realize the breakthrough improvement of the catalytic performance by synergistically optimizing the geometric configuration and electronic structure.In this paper,we systematically analyze the ORR/OER reaction mechanism and then comprehensively review the four main strategies to optimize the coordination environment of M-N-C:metal site regulation,coordination number engineering,non-metal atom doping,and carbon support regulation.Through an in-depth analysis of the structure-activity relationship between the coordination configuration and catalytic performance,the core challenges faced by current research are pointed out,and future research directions are envisioned.This work aims to provide theoretical references for the directional construction of highly efficient M-N-C catalysts with optimized coordination environments.
文摘The authors regret<During the submission process,Hongxiang Zhang and Honggen Peng served as the first and the second corresponding author,respectively.The original manuscript submitted for this paper also listed two co-corresponding authors(Hongxiang Zhang and Honggen Peng).But the corresponding author of Honggen Peng was omitted in the final published manuscript.So,we apply to designate Honggen Peng(penghonggen@ncu.edu.cn)as the second co-corresponding author and the corresponding unit is“a,b">.
文摘Effective lattice oxygen(Olatt)activation at low temperatures has long been a challenge in catalytic oxidation reactions.Traditional thermal catalytic soot combustion,even with Pt/Pd catalysts,is inefficient at exhaust temperatures below 200℃,particularly under conditions of frequent idling.Herein,we report an effective strategy utilizing non-thermal plasma(NTP)to activate Olatt in Ce_(1–x)Co_(x)O_(2–δ)catalysts,achieving dramatic enhancement of the soot combustion rate at low temperatures.At 200℃ and 4.3 W(discharge power,P_(dis)),NTP-Ce_(0.8)Co_(0.2)O_(2–δ)achieved 96.9%soot conversion(X_(C)),99.0%CO_(2) selectivity(S(CO_(2)))and a maximum energy conversion efficiency(Emax)of 14.7 g kWh^(–1).Compared with previously reported results,NTP-Ce_(0.8)Co_(0.2)O_(2–δ)exhibits the highest S(CO_(2))and Emax values.Remarkably,even without heating,X_(C),Emax,and S(CO_(2))reached 92.1%,6.1 g kWh–1,and 97.5%,respectively,at 6.3 W(P_(dis)).The results of characterization and theoretical calculation demonstrated that Co dopes into the CeO_(2) crystal lattice and forms an asymmetric Ce–O–Co structure,making oxygen“easy come,easy go”,thereby enabling the rapid combustion of soot over NTP-Ce_(0.8)Co_(0.2)O_(2–δ).This study highlights the great potential of NTP for activating Olatt and provides valuable insights into the design of efficient NTP-adapted catalysts for oxidation reactions.
基金supported by the National Natural Science Foundation of China(22202053,22109035,52362031,and 52274297)the start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20083,20084,23068,and 23169)+4 种基金the Hainan Province Science and Technology Special Fund(ZDYF2024SHFZ074)the Collaborative Innovation Center of Marine Science and Technology,Hainan University(XTCX2022HYC04)the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202315)the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202307)the Open Fund Project of Key Laboratory of Electrochemical Energy Storage and Energy Conversion in Hainan Province of China(KFKT2023002)。
文摘Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong acid in PEMWE systems pose a major challenge to the stability of electrocatalysts,and the development of efficient and corrosion-resistant catalysts is urgently needed.Currently,iridium(Ir)-based catalysts have gained great attention due to their promising activity and stability,while the extremely low reserves of Ir in the earth seriously hinder the commercialization of PEMWE.Therefore,a systematic understanding of the latest advances in Ir-based catalysts is necessary to guide their rational design to meet the industrial requirements.In this review,the general reaction mechanisms and advanced characterization techniques for mechanism recognition are first introduced.Afterwards,the systematic design strategies and performances of Ir-based catalysts,including metallic Ir,Ir oxides,and Ir-based perovskites,are summarized in detail.Finally,the conclusions,challenges,and prospects for Ir-based electrocatalysts are presented.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2023R1A2C2002444).
文摘Oxygen(O_(2))is an abundant material with its highly positive redox potential,making it a cost-effective choice for the cathodic active material of aqueous flow batteries(AFBs).However,utilizing O_(2)as an active material may induce a high overpotential issue for oxygen reduction reaction(ORR).To address this problem,this study proposes a new AFB system employing iron-2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol complex(Fe(BIS-TRIS))and O_(2)as redox couple and cobalt(triisopropanolamine)complex(Co(TiPA))as the redox mediator.Co(TiPA)can mitigate ORR overpotential through a mediated electron transfer(MET)mechanism.More specifically,during the charging step,in the catholyte,Co(II)(TiPA)s are oxidized to Co(III)(TiPA)s at the cathode,while HO_(2)-s are oxidized in the electrolyte tank,producing O_(2).During the discharging step,Co(III)(TiPA)s are reduced to Co(II)(TiPA)s.The resulting Co(II)(TiPA)then chemically reacts with O_(2)in the electrolyte tank,regenerating Co(III)(TiPA).Namely,this cycle ensures that Co(III)(TiPA)is electrochemically reduced to Co(II)(TiPA)at the cathode,while the reduced Co(II)(TiPA)is chemically re-oxidized in the electrolyte tank,effectively mediating electron transfer between electrode and oxygen.This process facilitates ORR without direct electrochemical reaction at the cathode,thereby alleviating its overpotential.UV-Vis spectroscopic analysis verifies that Co(TiPA)spontaneously reacts with O₂and mediates ORR.Fe(BIS-TRIS)-O_(2)AFB maintains 79.1%of its initial capacity over 170 h,demonstrating the feasibility of Co(TiPA)as the redox mediator.However,its structural degradation under oxygen evolution reaction is observed,limiting the long-term stability of Fe(BIS-TRIS)-O_(2)AFB.Thus,its structural modifications or development of alternative redox mediators are required.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2020037)the National Natural Science Foundation of China(22109035,52164028,52274297,22462006)+3 种基金the Postdoctoral Science Foundation of Hainan Province(RZ2100007123)the Basic and Applied Basic Research Foundation of Guangdong Province(2019A1515110558)the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20083,20084,21125)Hainan University(XTCX2022HYC05)。
文摘Efficient catalysis of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is essential for the rechargeable zinc-air batteries(R-ZABs).However,challenges remain due to the scarcity of effective bifunctional electrocatalysts and limited understanding of the structure-activity relationships.Pyrrole-type single-atom catalysts(SACs)with unique electronic structures have emerged as promising electrocatalysts.In this work,we combine density functional theory(DFT)calculations and experimental studies to systematically explore the structure-activity relationships and potential of pyrrole-type transition metal-N_(3)(TM-po-N_(3))as bifunctional catalysts.DFT calculations reveal that differences in the dependence of ORR and OER activities on the free energy of adsorption of reaction intermediates significantly affect the TM-po-N_(3)bifunctional activity and identify magnetic Cu-po-N_(3)as the best candidate.The bifunctional activity of Cu-po-N_(3)originates from interactions between spin-polarized out-of-plane Cu_3d and O_2s+2p orbitals.Theoretical predictions are validated experimentally,showing that the synthesized Cu-SAC/NC exhibits excellent bifunctional performance with a small potential gap of 0.666 V.Additionally,the assembled R-ZABs display a high-power density of 170 mW cm^(-2)and long-term stability,with the charge-discharge voltage gap increasing by only 0.01 V over 240 h.This work provides new insights into the design of efficient bifunctional catalysts.
基金the support of this work by State Key Laboratory of Tribology in Advanced Equipment,Tsinghua University(61012205321)。
文摘Extracorporeal membrane oxygenation(ECMO) has been developed for nearly 70 years,and it is the main technology to treat cardiopulmonary failure and continue to maintain life.As the core component of the ECMO system,the gas exchange membrane possesses low gas permeability and plasma leakage at present.In addition,the membrane material exists low blood compatibility,causing the formation of thrombosis.Therefore,the membrane material with high gas permeability and blood compatibility are urgently needed.This paper summarizes the membrane development process,preparation method,and modification method.It provides a new idea for the preparation and coating modification as artificial lung membrane.
文摘The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the intricate relationship between catalytic mechanisms and catalyst design.This review discusses the connotation and cutting-edge progress of traditional mechanisms such as adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM)as well as emerging pathways including oxide path mechanism(OPM),oxo-oxo coupling mechanism(OCM),and intramolecular oxygen coupling mechanism(IMOC)etc.Innovative research progress on the coexistence and transformation of multiple mechanisms is highlighted,and the intrinsic factors that influence these dynamic processes are summarized.Advanced characterization techniques and theoretical modeling are underscored as indispensable tools for revealing these complex interactions.This review provides guiding principles for mechanism-based catalyst design.Finally,in view of the multidimensional challenges currently faced by OER mechanisms,prospects for future research are given to bridge the gap between mechanism innovation and experimental verification and application.This comprehensive review provides valuable perspectives for advancing clean energy technologies and achieving sustainable development.
基金supported by the National Natural Science Foundation of China(No.U21A20293).
文摘Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were developed for enhancing the degradation of a model pollutant,tetracycline(TC),merely by airborne O_(2).Fh/B(3)NC showed excellent O_(2)activation activity for efficient TC degradation with a apparent TC degradation rate of 5.54,6.88,and 22.15 times that of B(3)NC,Fh,and raw BCs,respectively,where 1O_(2)and H_(2)O_(2)were identified as the dominant ROS for TC degradation.The B incorporation into the carbon lattice of Fh/B(3)NC promoted the generation of electron donors,sp2 C and the reductive B species,hence boosting Fe(III)reduction and 1O_(2)generation.O_(2)adsorption was enhanced due to the positively charged adsorption sites(C-B+and N-C+).And 1O_(2)was generated via Fe(II)catalyzed low-efficient successive one-electron transfer(O_(2)→O_(2)·−→1O_(2),H_(2)O_(2)),as well as biochar catalyzed high-efficient two-electron transfer(O_(2)→H_(2)O_(2)→1O_(2))that does not involve.O_(2)−as the intermediate.Moreover,Fh/B,N co-doped biochar showed a wide pH range,remarkable anti-interference capabilities,and effective detoxification.These findings shed new light on the development of environmentally benign BCs materials capable of degradading organic pollutants.
基金supported by the National Natural Science Foundation of China(Nos.U22A20143 and 22201262).
文摘The dearth of efficacious and economic bifunctional oxygen electrocatalysts has constituted a significant impediment to the actual implementation of high-performance metal-air batteries.Here,we construct an efficacious bifunctional oxygen electrocatalyst ZnFeNiCoCr high-entropy alloy(HEA)nanoparticles for oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)using a facile sol-gel strategy.The synthesized ZnFeNiCoCr HEA exhibits excellent bifunctional properties due to the synergistic effect between the metal elements.The overpotential of 305 mV at 10 mA·cm^(-2)for OER and a half-wave potential of 0.864 V for ORR,which is excellent to that of commercial RuO_(2)and Pt/C.Consequently,ZnFeNiCoCr HEA is utilized as a cathode catalyst for zinc-air batteries.The specific capacity of a zinc-air battery based on this HEA is 743 mAh·g^(-1)and the battery undergoes a continuous charge/discharge cycle for over 400 h.The ZnFeNiCoCr HEA catalyst holds significant application potential in diverse electrochemical energy storage and conversion devices.