The development of efficient and robust non-precious metal electrocatalyst to drive the sluggish hydrogen oxidation reaction(HOR)is the key to the practical application of anion exchange membrane fuel cells(AEMFC),whi...The development of efficient and robust non-precious metal electrocatalyst to drive the sluggish hydrogen oxidation reaction(HOR)is the key to the practical application of anion exchange membrane fuel cells(AEMFC),which relies on the rational regulation of intermediates’binding strength.Herein,we reported a simple strategy to manipulate the adsorption energy of OH^(∗)on electrocatalyst surface via engineering Ni/NbO_(x) heterostructures with manageable oxygen vacancy(Ov).Theoretical calculations confirm that the electronic effect between Ni and NbO_(x) could weaken the hydrogen adsorption on Ni,and the interfacial oxygen vacancy tailor hydroxide binding energy(OHBE).The optimized HBE and OHBE contribute to reduce formation energy of water during the alkaline HOR process.Furthermore,in situ Raman spectroscopy monitor the dynamic process that OH^(∗)adsorbed on oxygen vacancy and react with adjacent H^(∗)adsorbed Ni,confirming the vital role of OH^(∗)for alkaline HOR process.As a result,the optimal Ni/NbO_(x) exhibits a remarkable intrinsic activity with a specific activity of 0.036mA/cm^(2),which is 4-fold than that of pristine Ni counterpart and surpasses most non-precious electrocatalysts ever reported.展开更多
The employment of single atom catalysts(SACs)remarkably increases atomic utilization and catalytic efficiency in various electrochemical processes,especially when coupled with metal clusters/nanoparticles.However,the ...The employment of single atom catalysts(SACs)remarkably increases atomic utilization and catalytic efficiency in various electrochemical processes,especially when coupled with metal clusters/nanoparticles.However,the synergistic effects mainly focus on the energetics of key intermediates during the electrocatalysis,while the properties of electrode surface and electric-double-layer(EDL)structure are largely overlooked.Herein,we report the synthesis of Ru nanoparticles integrated with neighboring Ru single atoms on nitrogen doped carbon(Ru1,n/NC)as efficient catalysts toward hydrogen oxidation reaction(HOR)under alkaline electrolytes.Electrochemical data,in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy,and density functional theory calculations reveal that the positively charged Ru single atoms could lead to the dynamically regulated proportion of strongly hydrogen-bonded interfacial water structure with O-down conformation and optimized connectivity of the hydrogen-bond network in the EDL region,which contribute to the accelerated diffusion of hydroxide ions to the electrified interfaces.Consequently,the obtained Ru1,n/NC catalyst displays remarkable HOR performance with the mass activity of 1.15 mAμgPGM^(-1) under alkaline electrolyte.This work demonstrates the promise of single atoms for interfacial water environment adjustment and mass transfer process modulation,providing new insights into rational design of highly-effective SAC-based electrocatalysts.展开更多
Platinum-ruthenium alloys(PtRu)represent state-of-the-art alkaline hydrogen oxidation reaction(HOR)catalysts,yet the atomic-scale origin of their superiority over pure Pt remains incompletely understood.Here,we employ...Platinum-ruthenium alloys(PtRu)represent state-of-the-art alkaline hydrogen oxidation reaction(HOR)catalysts,yet the atomic-scale origin of their superiority over pure Pt remains incompletely understood.Here,we employ density functional theory calculations,ab initio molecular dynamics simulations,and microkinetic modeling on Pt(111)and PtRu(111)surfaces to systematically investigate the key factors,including active sites distribution,species adsorption,and solvent reorganization,that affect the HOR activity and decouple their contributions.The results reveal that while the moderate hydrogen binding energy and improved hydroxyl(OH)species adsorption both contribute to the enhanced activity,the dominant factor is the substantial reduction in solvent reorganization energy on the PtRu(111).This is facilitated by the spatial separation of active sites:Pt atoms preferentially stabilize adsorbed hydrogen,while Ru atoms strongly bind OH and interfacial water molecules.This configuration increases the probability of hydrogen interacting with OH/water and enhances the fraction of"H-up"water molecules,forming a well-organized hydrogen bond network within the electric double layer.The dynamically compatible interfacial water structure and HOR coordination promote H desorption and proton transfer in the Volmer step,thereby accelerating the HOR kinetics.展开更多
Uronic acids are prevalent components of crucial glycoconjugates,pivotal in various biological processes.In nature,NDP-uronic acids,the nucleosides-activated uronic acids,serve as glycosylation donors catalyzed by uro...Uronic acids are prevalent components of crucial glycoconjugates,pivotal in various biological processes.In nature,NDP-uronic acids,the nucleosides-activated uronic acids,serve as glycosylation donors catalyzed by uronosyltransferases(UATs)to construct glycans containing uronic acids.Despite their biological importance,the synthesis of naturally occurring NDP-uronic acids on a large scale remains challenging.Here,we developed an oxidation reaction insertion strategy for the efficient synthesis of NDP-uronic acids,and 11 NDP-uronic acids were successfully prepared in good yield and on a large scale.The prepared NDP-uronic acids can be used to explore new uronosyltransferases and synthesize uronic acids containing carbohydrates for fundamental research.展开更多
The formaldehyde oxidation reaction(FOR)on a Cu-based electrocatalyst enables hydrogen(H_(2))at the anode in OH−solution,facilitating a bipolar H_(2) production system at ultra-low electrolysis voltage.However,the spe...The formaldehyde oxidation reaction(FOR)on a Cu-based electrocatalyst enables hydrogen(H_(2))at the anode in OH−solution,facilitating a bipolar H_(2) production system at ultra-low electrolysis voltage.However,the specific impact of*OH adsorption on the Cu surface regarding the FOR has been rarely investigated.Herein,the strong*OH adsorption Cu(S-OH Cu)electrode,which exhibits high activity and excellent stability of FOR,is developed to investigate the specific impact of*OH adsorption on the Cu surface during the FOR process.Impressively,the increased*OH adsorption on the Cu electrode,typically regarded as a poisoning effect that diminishes inherent FOR activity by reducing the adsorption of intermediate reactants,is firstly revealed as an OH-induced favorable reconstruction effect that significantly improves FOR stability.Specifically,the dual functions of OH-induced favoring reconstruction include accelerating the phase transition of the Cu(0)/Cu(I)redox cycle to refresh the active site and optimizing surface reconstruction to preferentially generate Cu(220)with stronger adsorption energy for H_(2)C(OH)O*and lower C−H barrier energy during FOR.This work provides a promising strategy for designing stable Cu electrocatalysts for FOR to produce hydrogen with extremely low energy input.展开更多
The sluggish reaction kinetics of the oxygen evolution reaction(OER)and methanol oxidation reaction(MOR)remain obstacles to the commercial promotion of water splitting and direct methanol fuel cells.Considering the vi...The sluggish reaction kinetics of the oxygen evolution reaction(OER)and methanol oxidation reaction(MOR)remain obstacles to the commercial promotion of water splitting and direct methanol fuel cells.Considering the vital role of noble metals in electrocatalytic activity,this work focuses on the rational synthesis of Ni-noble metal composite nanocatalysts for overcoming the drawbacks of high cost and susceptible oxidized surfaces of noble metals.The inherent catalytic activity is improved by the altered electronic structure and effective active sites of the catalyst induced by the size effect of noble metal clusters.In particular,a series of Ni-noble metal nanocomposites are successfully synthesized by partially introducing noble metal into Ni with porous interfacial defects derived from Ni-Al layered double hydroxide(LDH).The Ni_(10)Pd_(1)nanocomposite exhibits high OER catalytic activity with an overpotential of 0.279 V at 10 m A/cm^(2),surpassing Ni_(10)Ag_(1)and Ni_(10)Au_(1)counterparts.Furthermore,the average diameter of Pd clusters gradually increases from 5.57 nm to 44.44 nm with the increased proportion of doped Pd,leading to the passivation of catalytic activity due to the exacerbated surface oxidation of Pd in the form of Pd^(2+).After optimization,Ni_(10)Pd_(1)delivers significantly enhanced OER and MOR electroactivities and long-term stability compared to that of Ni_(2)Pd_(1),Ni_(1)Pd_(1)and Ni_(1)Pd_(2),which is conducive to the effective utilization of Pd and alleviation of surface oxidation.展开更多
Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal ...Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal sites in the state-of-the-art metal single-atom catalysts(M-SACs)hinders their further industrial applications,and the high potential and valueless oxygen product of the conventional anodic oxygen evolution reaction(OER)further limit the economic efficiency of this technology.To address this,a dynamically local structure reconstruction strategy is proposed to in situ transfer the active sites from unstable metal sites to the stable surrounding carbon sites for efficient and durable 2e^(-)ORR electrocatalysis.For the as-designed Mn-N_(3)O-C catalyst,by reconstructing Mn sites into Mn(^(*)OH),the Mn sites were passivated and carbon sites adjacent to the O atom were verified to be the actual active sites by in situ characterization and theoretical calculation.Consequently,Mn-N_(3)O-C exhibited>80%Faradaic efficiency and superior long-term durability over 100 h for H_(2)O_(2)electrosynthesis at~120 mA cm^(-2).In addition,coupling anodic ethylene glycol oxidation reaction(EGOR)further improves the efficiency and economic viability of the H_(2)O_(2)electrosynthesis system.This two-pronged strategy thus opens up a new opportunity for the development of stable H_(2)O_(2)electrosynthesis with low energy consumption and superior economic performance.展开更多
It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization appli...It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.展开更多
Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their m...Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts.展开更多
An experiment for the oxidation process of single magnetite pellet and theoretical analysis based on modi lied unreacted core shrinking (MUCS) model were carried out, and the controlling mechanisms of the initial an...An experiment for the oxidation process of single magnetite pellet and theoretical analysis based on modi lied unreacted core shrinking (MUCS) model were carried out, and the controlling mechanisms of the initial and de veloping reactions were examined, respectively. From the study of the initial reaction, it was found that the chemical reaction of surface is the controlling step of the overall reaction when the temperature is up to about 750 K, while the mass transfer through the gaseous boundary layer dominates the reaction rate when the temperature is above 750 K. As the reaction developing within the pellet, the mass transfer through the produced layer becomes the controlling step. In addition, the effects of reaction conditions (such as oxygen concentration, temperature) on the fractional oxidation of magnetite pellet were determined.展开更多
Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,an...Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,and expandable method is developed to synthesis two-dimensional(2D) ternary Pt Bi M nanoplates(NPLs), in which various M(Co, Ni, Cu, Zn, Sn) is severed as the third component to the binary Pt Bi system. The MOR performance of Pt Bi M NPLs is entirely investigated, demonstrating that both the MOR activity and durability is enhanced with the introduction of the additional composition. Pt3Bi3Zn NPLs shows much higher MOR activity and stability than that of the Pt Bi counterparts, not to mention the current advanced Pt Ru/C and Pt/C catalysts. The prominent performances are attributed to the modulated electronic structure of the surface Pt in Pt Bi NPLs by the addition of Zn, resulting in a weakened affination between Pt and the adsorbed poisoning species(mainly CO) compared with Pt Bi NPLs, verified by density functional theory(DFT) calculations. In addition, the absorbed OH can be generated on the surface of Zn atom due to its favorable water activation properties, thus the CO removal on the adjacent Pt atoms is accelerated, further leading to a high activity and anti-poisoning performance of the resulting Pt_(3)Bi_(3)Zn catalyst. This work provides new insights and robust strategy for highly efficient MOR electrocatalyst with extraordinary anti-poisoning performance and stability.展开更多
Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped b...Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped by its sluggish UOR kinetics and intricate reaction intermediates formation/desorption process.Herein,we report a novel and effective electrocatalyst consisting of carbon cloth supported nitrogen vacancies-enriched Ce-doped Ni_(3)N hierarchical nanosheets (Ce-Ni_(3)N @CC) to optimize the flat-footed UOR kinetics,especially the stiff rate-determine CO_(2)desorption step of UOR.Upon the introduction of valance state variable Ce,the resultant nitrogen vacancies enriched Ce-Ni_(3)N @CC exhibits an enhanced UOR performance where the operation voltage requires only 1.31 V to deliver the current density of 10 mA cm^(-2),which is superior to that of Ni_(3)N @CC catalyst (1.36 V) and other counterparts.Density functional theory (DFT) results demonstrate that the incorporation of Ce in Ni_(3)N lowers the formation energy of nitrogen vacancies,resulting in rich nitrogen vacancies in Ce-Ni_(3)N @CC.Moreover,the nitrogen vacancies together with Ce doping optimize the local charge distribution around Ni sites,and balance the adsorption energy of CO_(2)in the rate-determining step (RDS),as well as affect the initial adsorption structure of urea,leading to the superior UOR catalytic performance of Ce-Ni_(3)N @CC.When integrating the Ce-Ni_(3)N catalyst in UOR//HER and UOR//CO_(2)R flow electrolyzer,both of them perform well with low operation voltage and robust long-term stability,proofing that the thermodynamically favorable UOR can act as a suitable substitute anodic reaction compared with that of OER.Our findings here not only provide a novel UOR catalyst but also offer a promising design strategy for the future development of energy-related devices.展开更多
As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with hig...As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with high atomic utilization open up a desirable perspective for the scale applications of precious metals,but the general and facile preparation of various precious metal-based SACs remains challenging.Herein,a general movable printing method has been developed to synthesize various precious metal-based SACs,such as Pd,Pt,Rh,Ir,and Ru,and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations.More importantly,the synthesized Pt-and Ru-based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction(HER).In addition,the Pd-based SAC delivers an excellent activity for photocatalytic hydrogen evolution.Especially for the superior mass activity of Ru-based SACs toward HER,density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts.展开更多
metal oxide electronic interactions in composite electrocatalysts have a considerable impact on their catalytic capability.In this study,we successfully synthesized an electrocatalytic material composed of MoO_(3)/C s...metal oxide electronic interactions in composite electrocatalysts have a considerable impact on their catalytic capability.In this study,we successfully synthesized an electrocatalytic material composed of MoO_(3)/C speciessupported Pd nanoparticles(Pd-MoO_(3)/C)using a convenient hydrothermal method,which exhibited excellent catalytic activities for both ethanol oxidation and oxygen reduction in KOH media.The specific activity of PdMoO_(3)/C toward ethanol oxidation with MoO_(3)loading(40wt%)was~2.6 times greater than that for the commercial Pd/C(10 wt%)with the same Pd content.In particular,the activity could effectively hold up to~60%of its maximum activity after 500-cycle tests,demonstrating improved cyclical stability.Notably,the fast electron transfer kinetics toward oxygen reduction for Pd-MoO_(3)/C(40%)were also comparable to those of commercial Pt/C(20 wt%)catalysts.These superior electrochemical features are primarily derived from the stronger electronic coupling between Pd and MoO_(3)through charge transfer,which can supply more active centers and improve the anti-poisoning ability.Meanwhile,the MoO_(3)species in the Pd-MoO_(3)/C composite may provide additional benefits in terms of electrical conductivity and dispersion.展开更多
The development of highly efficient electrocatalysts toward hydrogen oxidation reaction(HOR)under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cells(AEMFCs).However,the HOR ...The development of highly efficient electrocatalysts toward hydrogen oxidation reaction(HOR)under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cells(AEMFCs).However,the HOR kinetics in alkaline is two to three orders of magnitude slower than that in acid.More critically,fundamental understanding of the sluggish kinetics derived from the p H effect is still debatable.In this review,the recent development of understanding HOR mechanism and rational design of advanced HOR electrocatalysts are summarized.First,recent advances in the theories focusing on fundamental understandings of HOR under alkaline electrolyte are comprehensively discussed.Then,from the aspect of intermediates binding energy,optimizing hydrogen binding energy(HBE)and increasing hydroxyl binding energy(OHBE),the strategies for designing efficient alkaline HOR catalysts are summarized.At last,perspectives for the future research on alkaline HOR are pointed out.展开更多
Bimetallic Pt-based catalysts have been extensively investigated to enhance the performance of direct methanol fuel cells(DMFCs) because CO, a by-product, reduces the activity of the pure Pt catalysts. Herein, we synt...Bimetallic Pt-based catalysts have been extensively investigated to enhance the performance of direct methanol fuel cells(DMFCs) because CO, a by-product, reduces the activity of the pure Pt catalysts. Herein, we synthesized Pt-Pb hexagonal nanoplates as a model catalyst for the methanol oxidation reaction(MOR) and further controlled the Pt and Pb distributions on the surface of the nanoplates through acetic acid(HAc) treatment. As a result, we obtained Pt-Pb nanoplates and HAc-treated Pt-Pb nanoplates with homogeneous and heterogeneous distributions of the Pt-Pb alloy surfaces, respectively. We showed that the MOR activity and stability of the Pt-Pb nanoplates improved compared to those of the HAc-treated Pt-Pb nanoplates, mainly due to the enhanced CO tolerance and the modified electronic structure of Pt under the influence of the oxophilic Pb.展开更多
This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation o...This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation of Au,the alloyed Au1Pt1/C nanoparticles exhibit superior HOR activity than commercial PtRu/C.On the contrary,the catalytic performance of the phase-segregated Au2Pt1/C and Au1Pt1/C bimetallic nanoparticles in HOR is significantly worse.Moreover,Au1Pt1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles,while performance attenuation of commercial PtRu/C is high up to 15% under the same condition.Our results indicate that the alloyed Au1Pt1/C is a promising candidate to substitute commercial PtRu/C for hydrogen oxidation reaction in alkaline electrolyte.展开更多
Anion exchange membrane(AEM)fuel cells have gained great attention partially due to the advantage of using non-precious metal as catalysts.However,the reaction kinetics of hydrogen oxidation reaction(HOR)is two orders...Anion exchange membrane(AEM)fuel cells have gained great attention partially due to the advantage of using non-precious metal as catalysts.However,the reaction kinetics of hydrogen oxidation reaction(HOR)is two orders of magnitude slower in alkaline systems than in acid.To understand the slower kinetics of HOR in base,two major theories have been proposed,such as(1)pH dependent hydrogen binding energy as a major descriptor for HOR;and(2)bifunctional theory based on the contributions of both hydrogen and hydroxide adsorption for HOR in alkaline electrolyte.Here,we discuss the possible HOR mechanisms in alkaline electrolytes with the corresponding change in their Tafel behavior.Apart from the traditional Tafel-Volmer and Heyrovsky-Volmer HOR mechanisms,the recently proposed hydroxide adsorption step is also discussed to illustrate the difference in HOR mechanisms in acid and base.We further summarize the representative works of alkaline HOR catalyst design(e.g.,precious metals,alloy,intermetallic materials,Ni-based alloys,carbides,nitrides,etc.),and briefly describe their fundamental HOR reaction mechanism to emphasize the difference in elementary reaction steps in alkaline medium.The strategy of strengthening local interaction that facilitates both H2 desorption and Hads+OHads recombination is finally proposed for future HOR catalyst design in alkaline environment.展开更多
Crystalline metal-organic framework cobalt (II) benzenetricarboxylate C%(BTC)2·12H2O (MOF-Co) has been prepared using solvothermal method. The reaction of cobalt (II) nitrate and 1,3,5-benzenetriearboxyl...Crystalline metal-organic framework cobalt (II) benzenetricarboxylate C%(BTC)2·12H2O (MOF-Co) has been prepared using solvothermal method. The reaction of cobalt (II) nitrate and 1,3,5-benzenetriearboxylic (BTC) acid in a mixed solution of N,N-dimethylformarnide (DMF)/C2H5OH/H2O (1:1:1, v/v) at low temperature for short reaction times produced this crystalline compound. Compared with traditional hydrothermal method, a mixed solution method for the synthesis of crystalline metal complex was found to be highly efficient. After water molecules were removed from this metal complex, its exposed nodes served as active sites. When this MOF-Co was employed in the oxidation of CO, it showed good catalytic properties causing 100% conversion of CO to CO2 at low temperature of 160 ℃.展开更多
Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of ...Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of active and stable non-noble metal electrocatalysts for MOR is desired,but remains a challenge.Herein,we report a simple strategy to make copper nanocrystal/nitrogen-doped carbon(Cu/N-C)monoliths,which can serve as active and robust electrodes for MOR.Copper nanocrystals were electrochemically deposited onto a conductive polyaniline hydrogel and calcined to form Cu/N-C monolith,where the active copper nanocrystals are protected by nitrogen-doped carbon.Owing to their extremely high electrical conductivity(1.25 × 10^(5) S cm^(-1)) and mechanical robustness,these Cu/N-C monoliths can be directly used as electrodes for MOR,without using substrates or additives.The optimal Cu/N-C(FT)@500 monolith shows a high MOR activity of 189 mA cm^(-2) at 0.6 V vs.SCE in alkaline methanol solution,superior to most of reported Cu-based MOR catalysts.Cu/N-C(FT)@500 also presents a better stability than Pt/C catalyst in the long-term MOR test at high current densities.Upon carbon monoxide(CO) poisoning,Cu/N-C(FT)@500 retains 96% of its MOR activity,far exceeding the performance of Pt/C catalyst(61% retention).Owing to its facile synthesis,outstanding activity,high stability and mechanical robustness,Cu/N-C(FT)@500 monolith is promising as a low-cost,efficient and CO-resistant electrocatalyst for MOR.展开更多
基金supported by Jilin Province Science and Technology Development Program(Nos.20200201001JC,20210502002ZP,20230101367JC,20220301011GX)Jilin Province Science and Technology Major Project(No.222648GX0105103875).
文摘The development of efficient and robust non-precious metal electrocatalyst to drive the sluggish hydrogen oxidation reaction(HOR)is the key to the practical application of anion exchange membrane fuel cells(AEMFC),which relies on the rational regulation of intermediates’binding strength.Herein,we reported a simple strategy to manipulate the adsorption energy of OH^(∗)on electrocatalyst surface via engineering Ni/NbO_(x) heterostructures with manageable oxygen vacancy(Ov).Theoretical calculations confirm that the electronic effect between Ni and NbO_(x) could weaken the hydrogen adsorption on Ni,and the interfacial oxygen vacancy tailor hydroxide binding energy(OHBE).The optimized HBE and OHBE contribute to reduce formation energy of water during the alkaline HOR process.Furthermore,in situ Raman spectroscopy monitor the dynamic process that OH^(∗)adsorbed on oxygen vacancy and react with adjacent H^(∗)adsorbed Ni,confirming the vital role of OH^(∗)for alkaline HOR process.As a result,the optimal Ni/NbO_(x) exhibits a remarkable intrinsic activity with a specific activity of 0.036mA/cm^(2),which is 4-fold than that of pristine Ni counterpart and surpasses most non-precious electrocatalysts ever reported.
文摘The employment of single atom catalysts(SACs)remarkably increases atomic utilization and catalytic efficiency in various electrochemical processes,especially when coupled with metal clusters/nanoparticles.However,the synergistic effects mainly focus on the energetics of key intermediates during the electrocatalysis,while the properties of electrode surface and electric-double-layer(EDL)structure are largely overlooked.Herein,we report the synthesis of Ru nanoparticles integrated with neighboring Ru single atoms on nitrogen doped carbon(Ru1,n/NC)as efficient catalysts toward hydrogen oxidation reaction(HOR)under alkaline electrolytes.Electrochemical data,in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy,and density functional theory calculations reveal that the positively charged Ru single atoms could lead to the dynamically regulated proportion of strongly hydrogen-bonded interfacial water structure with O-down conformation and optimized connectivity of the hydrogen-bond network in the EDL region,which contribute to the accelerated diffusion of hydroxide ions to the electrified interfaces.Consequently,the obtained Ru1,n/NC catalyst displays remarkable HOR performance with the mass activity of 1.15 mAμgPGM^(-1) under alkaline electrolyte.This work demonstrates the promise of single atoms for interfacial water environment adjustment and mass transfer process modulation,providing new insights into rational design of highly-effective SAC-based electrocatalysts.
文摘Platinum-ruthenium alloys(PtRu)represent state-of-the-art alkaline hydrogen oxidation reaction(HOR)catalysts,yet the atomic-scale origin of their superiority over pure Pt remains incompletely understood.Here,we employ density functional theory calculations,ab initio molecular dynamics simulations,and microkinetic modeling on Pt(111)and PtRu(111)surfaces to systematically investigate the key factors,including active sites distribution,species adsorption,and solvent reorganization,that affect the HOR activity and decouple their contributions.The results reveal that while the moderate hydrogen binding energy and improved hydroxyl(OH)species adsorption both contribute to the enhanced activity,the dominant factor is the substantial reduction in solvent reorganization energy on the PtRu(111).This is facilitated by the spatial separation of active sites:Pt atoms preferentially stabilize adsorbed hydrogen,while Ru atoms strongly bind OH and interfacial water molecules.This configuration increases the probability of hydrogen interacting with OH/water and enhances the fraction of"H-up"water molecules,forming a well-organized hydrogen bond network within the electric double layer.The dynamically compatible interfacial water structure and HOR coordination promote H desorption and proton transfer in the Volmer step,thereby accelerating the HOR kinetics.
基金financially supported by National Natural Science Foundation of China(No.22207113 to J.Zhang)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110588to J.Zhang)Natural Science Foundation of Shanghai Municipality(No.22ZR1474000 to L.Wen)。
文摘Uronic acids are prevalent components of crucial glycoconjugates,pivotal in various biological processes.In nature,NDP-uronic acids,the nucleosides-activated uronic acids,serve as glycosylation donors catalyzed by uronosyltransferases(UATs)to construct glycans containing uronic acids.Despite their biological importance,the synthesis of naturally occurring NDP-uronic acids on a large scale remains challenging.Here,we developed an oxidation reaction insertion strategy for the efficient synthesis of NDP-uronic acids,and 11 NDP-uronic acids were successfully prepared in good yield and on a large scale.The prepared NDP-uronic acids can be used to explore new uronosyltransferases and synthesize uronic acids containing carbohydrates for fundamental research.
基金the National Natural Science Foundation of China(No.22372104)the Shenzhen Science and Technology Program(Nos.ZDSYS20220527171401003 and KQTD20190929173914967)+1 种基金Guangdong College Students Science and Technology Innovation Cultivation Special Fund Project(No.pdjh2024a315)The authors also acknowledge the Instrumental Analysis Center of Shenzhen University(Xili Campus)for their assistance on TEM observation.
文摘The formaldehyde oxidation reaction(FOR)on a Cu-based electrocatalyst enables hydrogen(H_(2))at the anode in OH−solution,facilitating a bipolar H_(2) production system at ultra-low electrolysis voltage.However,the specific impact of*OH adsorption on the Cu surface regarding the FOR has been rarely investigated.Herein,the strong*OH adsorption Cu(S-OH Cu)electrode,which exhibits high activity and excellent stability of FOR,is developed to investigate the specific impact of*OH adsorption on the Cu surface during the FOR process.Impressively,the increased*OH adsorption on the Cu electrode,typically regarded as a poisoning effect that diminishes inherent FOR activity by reducing the adsorption of intermediate reactants,is firstly revealed as an OH-induced favorable reconstruction effect that significantly improves FOR stability.Specifically,the dual functions of OH-induced favoring reconstruction include accelerating the phase transition of the Cu(0)/Cu(I)redox cycle to refresh the active site and optimizing surface reconstruction to preferentially generate Cu(220)with stronger adsorption energy for H_(2)C(OH)O*and lower C−H barrier energy during FOR.This work provides a promising strategy for designing stable Cu electrocatalysts for FOR to produce hydrogen with extremely low energy input.
基金support by the National Natural Science Foundation of China(Nos.U20A20123,51874357,22379166)Natural Science Foundation for Distinguished Young Scholars of Hunan Province(No.2022JJ10089)。
文摘The sluggish reaction kinetics of the oxygen evolution reaction(OER)and methanol oxidation reaction(MOR)remain obstacles to the commercial promotion of water splitting and direct methanol fuel cells.Considering the vital role of noble metals in electrocatalytic activity,this work focuses on the rational synthesis of Ni-noble metal composite nanocatalysts for overcoming the drawbacks of high cost and susceptible oxidized surfaces of noble metals.The inherent catalytic activity is improved by the altered electronic structure and effective active sites of the catalyst induced by the size effect of noble metal clusters.In particular,a series of Ni-noble metal nanocomposites are successfully synthesized by partially introducing noble metal into Ni with porous interfacial defects derived from Ni-Al layered double hydroxide(LDH).The Ni_(10)Pd_(1)nanocomposite exhibits high OER catalytic activity with an overpotential of 0.279 V at 10 m A/cm^(2),surpassing Ni_(10)Ag_(1)and Ni_(10)Au_(1)counterparts.Furthermore,the average diameter of Pd clusters gradually increases from 5.57 nm to 44.44 nm with the increased proportion of doped Pd,leading to the passivation of catalytic activity due to the exacerbated surface oxidation of Pd in the form of Pd^(2+).After optimization,Ni_(10)Pd_(1)delivers significantly enhanced OER and MOR electroactivities and long-term stability compared to that of Ni_(2)Pd_(1),Ni_(1)Pd_(1)and Ni_(1)Pd_(2),which is conducive to the effective utilization of Pd and alleviation of surface oxidation.
基金supported by the National Natural Science Foundation of China(22379111 and 22179093)。
文摘Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal sites in the state-of-the-art metal single-atom catalysts(M-SACs)hinders their further industrial applications,and the high potential and valueless oxygen product of the conventional anodic oxygen evolution reaction(OER)further limit the economic efficiency of this technology.To address this,a dynamically local structure reconstruction strategy is proposed to in situ transfer the active sites from unstable metal sites to the stable surrounding carbon sites for efficient and durable 2e^(-)ORR electrocatalysis.For the as-designed Mn-N_(3)O-C catalyst,by reconstructing Mn sites into Mn(^(*)OH),the Mn sites were passivated and carbon sites adjacent to the O atom were verified to be the actual active sites by in situ characterization and theoretical calculation.Consequently,Mn-N_(3)O-C exhibited>80%Faradaic efficiency and superior long-term durability over 100 h for H_(2)O_(2)electrosynthesis at~120 mA cm^(-2).In addition,coupling anodic ethylene glycol oxidation reaction(EGOR)further improves the efficiency and economic viability of the H_(2)O_(2)electrosynthesis system.This two-pronged strategy thus opens up a new opportunity for the development of stable H_(2)O_(2)electrosynthesis with low energy consumption and superior economic performance.
基金supported by the National Natural Science Foundation of China (21103165)
文摘It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.
文摘Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts.
基金Sponsored by National Natural Science Foundation of China(59374166,11072057)
文摘An experiment for the oxidation process of single magnetite pellet and theoretical analysis based on modi lied unreacted core shrinking (MUCS) model were carried out, and the controlling mechanisms of the initial and de veloping reactions were examined, respectively. From the study of the initial reaction, it was found that the chemical reaction of surface is the controlling step of the overall reaction when the temperature is up to about 750 K, while the mass transfer through the gaseous boundary layer dominates the reaction rate when the temperature is above 750 K. As the reaction developing within the pellet, the mass transfer through the produced layer becomes the controlling step. In addition, the effects of reaction conditions (such as oxygen concentration, temperature) on the fractional oxidation of magnetite pellet were determined.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2020037,2020207)the National Natural Science Foundation of China(21805104,22109034,22109035,52164028,62105083)+3 种基金the Basic and Applied Basic Research Foundation of Guangdong Province(2019A1515110558)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province(202021)the Innovative Research Projects for Graduate Students of Hainan Province(Qhys2021-134)the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20082,20083,20084,21065,21124,21125)。
文摘Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,and expandable method is developed to synthesis two-dimensional(2D) ternary Pt Bi M nanoplates(NPLs), in which various M(Co, Ni, Cu, Zn, Sn) is severed as the third component to the binary Pt Bi system. The MOR performance of Pt Bi M NPLs is entirely investigated, demonstrating that both the MOR activity and durability is enhanced with the introduction of the additional composition. Pt3Bi3Zn NPLs shows much higher MOR activity and stability than that of the Pt Bi counterparts, not to mention the current advanced Pt Ru/C and Pt/C catalysts. The prominent performances are attributed to the modulated electronic structure of the surface Pt in Pt Bi NPLs by the addition of Zn, resulting in a weakened affination between Pt and the adsorbed poisoning species(mainly CO) compared with Pt Bi NPLs, verified by density functional theory(DFT) calculations. In addition, the absorbed OH can be generated on the surface of Zn atom due to its favorable water activation properties, thus the CO removal on the adjacent Pt atoms is accelerated, further leading to a high activity and anti-poisoning performance of the resulting Pt_(3)Bi_(3)Zn catalyst. This work provides new insights and robust strategy for highly efficient MOR electrocatalyst with extraordinary anti-poisoning performance and stability.
基金financially supported by the National Natural Science Foundation of China (22109073, 22072067 and 21875112)the supports from National and Local Joint Engineering Research Center of Biomedical Functional Materialsa project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped by its sluggish UOR kinetics and intricate reaction intermediates formation/desorption process.Herein,we report a novel and effective electrocatalyst consisting of carbon cloth supported nitrogen vacancies-enriched Ce-doped Ni_(3)N hierarchical nanosheets (Ce-Ni_(3)N @CC) to optimize the flat-footed UOR kinetics,especially the stiff rate-determine CO_(2)desorption step of UOR.Upon the introduction of valance state variable Ce,the resultant nitrogen vacancies enriched Ce-Ni_(3)N @CC exhibits an enhanced UOR performance where the operation voltage requires only 1.31 V to deliver the current density of 10 mA cm^(-2),which is superior to that of Ni_(3)N @CC catalyst (1.36 V) and other counterparts.Density functional theory (DFT) results demonstrate that the incorporation of Ce in Ni_(3)N lowers the formation energy of nitrogen vacancies,resulting in rich nitrogen vacancies in Ce-Ni_(3)N @CC.Moreover,the nitrogen vacancies together with Ce doping optimize the local charge distribution around Ni sites,and balance the adsorption energy of CO_(2)in the rate-determining step (RDS),as well as affect the initial adsorption structure of urea,leading to the superior UOR catalytic performance of Ce-Ni_(3)N @CC.When integrating the Ce-Ni_(3)N catalyst in UOR//HER and UOR//CO_(2)R flow electrolyzer,both of them perform well with low operation voltage and robust long-term stability,proofing that the thermodynamically favorable UOR can act as a suitable substitute anodic reaction compared with that of OER.Our findings here not only provide a novel UOR catalyst but also offer a promising design strategy for the future development of energy-related devices.
基金National Natural Science Foundation of China,Grant/Award Numbers:62105083,22109034,22109035,52164028Start-up Research Foundation of Hainan University,Grant/Award Numbers:KYQD(ZR)-20008,KYQD(ZR)-20082,KYQD(ZR)-20083,KYQD(ZR)-20084,KYQD(ZR)-21065,KYQD(ZR)-21124,KYQD(ZR)-21125+4 种基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Number:2019A1515110558Hainan Provincial Postdoctoral Science Foundation,Grant/Award Number:RZ2100007123Hainan Province Science and Technology Special Fund,Grant/Award Numbers:ZDYF2020037,ZDYF2020207Hainan Provincial Natural Science Foundation,Grant/Award Numbers:222MS009,222RC548The specific research fund of The Innovation Platform for Academicians of Hainan Province。
文摘As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with high atomic utilization open up a desirable perspective for the scale applications of precious metals,but the general and facile preparation of various precious metal-based SACs remains challenging.Herein,a general movable printing method has been developed to synthesize various precious metal-based SACs,such as Pd,Pt,Rh,Ir,and Ru,and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations.More importantly,the synthesized Pt-and Ru-based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction(HER).In addition,the Pd-based SAC delivers an excellent activity for photocatalytic hydrogen evolution.Especially for the superior mass activity of Ru-based SACs toward HER,density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts.
基金financially supported by the Natural Science Foundation of Shanxi Province(No.201901D111277)the National Natural Science Foundation of China(No.21571119)+1 种基金the Graduate Science and Technology Innovation Project Foundation of Shanxi Normal University(No.2021DCXM71)the Program for New Century Excellent Talents in University(No.NCET-12-1035)。
文摘metal oxide electronic interactions in composite electrocatalysts have a considerable impact on their catalytic capability.In this study,we successfully synthesized an electrocatalytic material composed of MoO_(3)/C speciessupported Pd nanoparticles(Pd-MoO_(3)/C)using a convenient hydrothermal method,which exhibited excellent catalytic activities for both ethanol oxidation and oxygen reduction in KOH media.The specific activity of PdMoO_(3)/C toward ethanol oxidation with MoO_(3)loading(40wt%)was~2.6 times greater than that for the commercial Pd/C(10 wt%)with the same Pd content.In particular,the activity could effectively hold up to~60%of its maximum activity after 500-cycle tests,demonstrating improved cyclical stability.Notably,the fast electron transfer kinetics toward oxygen reduction for Pd-MoO_(3)/C(40%)were also comparable to those of commercial Pt/C(20 wt%)catalysts.These superior electrochemical features are primarily derived from the stronger electronic coupling between Pd and MoO_(3)through charge transfer,which can supply more active centers and improve the anti-poisoning ability.Meanwhile,the MoO_(3)species in the Pd-MoO_(3)/C composite may provide additional benefits in terms of electrical conductivity and dispersion.
基金financially supported by the National Key Research and Development program of China(2018YFB1502302)the National Natural Science Foundation of China(21972107)+1 种基金the Natural Science Foundation of Hubei Province(2020CFA095)the Natural Science Foundation of Jiangsu Province(BK20191186)。
文摘The development of highly efficient electrocatalysts toward hydrogen oxidation reaction(HOR)under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cells(AEMFCs).However,the HOR kinetics in alkaline is two to three orders of magnitude slower than that in acid.More critically,fundamental understanding of the sluggish kinetics derived from the p H effect is still debatable.In this review,the recent development of understanding HOR mechanism and rational design of advanced HOR electrocatalysts are summarized.First,recent advances in the theories focusing on fundamental understandings of HOR under alkaline electrolyte are comprehensively discussed.Then,from the aspect of intermediates binding energy,optimizing hydrogen binding energy(HBE)and increasing hydroxyl binding energy(OHBE),the strategies for designing efficient alkaline HOR catalysts are summarized.At last,perspectives for the future research on alkaline HOR are pointed out.
文摘Bimetallic Pt-based catalysts have been extensively investigated to enhance the performance of direct methanol fuel cells(DMFCs) because CO, a by-product, reduces the activity of the pure Pt catalysts. Herein, we synthesized Pt-Pb hexagonal nanoplates as a model catalyst for the methanol oxidation reaction(MOR) and further controlled the Pt and Pb distributions on the surface of the nanoplates through acetic acid(HAc) treatment. As a result, we obtained Pt-Pb nanoplates and HAc-treated Pt-Pb nanoplates with homogeneous and heterogeneous distributions of the Pt-Pb alloy surfaces, respectively. We showed that the MOR activity and stability of the Pt-Pb nanoplates improved compared to those of the HAc-treated Pt-Pb nanoplates, mainly due to the enhanced CO tolerance and the modified electronic structure of Pt under the influence of the oxophilic Pb.
基金financially supported by the National Natural Science Foundation of China (Grants no. 21376283, 21436003 and 21576032)
文摘This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation of Au,the alloyed Au1Pt1/C nanoparticles exhibit superior HOR activity than commercial PtRu/C.On the contrary,the catalytic performance of the phase-segregated Au2Pt1/C and Au1Pt1/C bimetallic nanoparticles in HOR is significantly worse.Moreover,Au1Pt1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles,while performance attenuation of commercial PtRu/C is high up to 15% under the same condition.Our results indicate that the alloyed Au1Pt1/C is a promising candidate to substitute commercial PtRu/C for hydrogen oxidation reaction in alkaline electrolyte.
文摘Anion exchange membrane(AEM)fuel cells have gained great attention partially due to the advantage of using non-precious metal as catalysts.However,the reaction kinetics of hydrogen oxidation reaction(HOR)is two orders of magnitude slower in alkaline systems than in acid.To understand the slower kinetics of HOR in base,two major theories have been proposed,such as(1)pH dependent hydrogen binding energy as a major descriptor for HOR;and(2)bifunctional theory based on the contributions of both hydrogen and hydroxide adsorption for HOR in alkaline electrolyte.Here,we discuss the possible HOR mechanisms in alkaline electrolytes with the corresponding change in their Tafel behavior.Apart from the traditional Tafel-Volmer and Heyrovsky-Volmer HOR mechanisms,the recently proposed hydroxide adsorption step is also discussed to illustrate the difference in HOR mechanisms in acid and base.We further summarize the representative works of alkaline HOR catalyst design(e.g.,precious metals,alloy,intermetallic materials,Ni-based alloys,carbides,nitrides,etc.),and briefly describe their fundamental HOR reaction mechanism to emphasize the difference in elementary reaction steps in alkaline medium.The strategy of strengthening local interaction that facilitates both H2 desorption and Hads+OHads recombination is finally proposed for future HOR catalyst design in alkaline environment.
基金Funded by the Natural Science Foundation of Hubei Province,China(No.2011CDA070)Research Fund for the Doctoral Program of Hubei University for Nationalities(No.MY2014B013)
文摘Crystalline metal-organic framework cobalt (II) benzenetricarboxylate C%(BTC)2·12H2O (MOF-Co) has been prepared using solvothermal method. The reaction of cobalt (II) nitrate and 1,3,5-benzenetriearboxylic (BTC) acid in a mixed solution of N,N-dimethylformarnide (DMF)/C2H5OH/H2O (1:1:1, v/v) at low temperature for short reaction times produced this crystalline compound. Compared with traditional hydrothermal method, a mixed solution method for the synthesis of crystalline metal complex was found to be highly efficient. After water molecules were removed from this metal complex, its exposed nodes served as active sites. When this MOF-Co was employed in the oxidation of CO, it showed good catalytic properties causing 100% conversion of CO to CO2 at low temperature of 160 ℃.
基金supported by the National Natural Science Foundation of China(21722406,21975240,21676258)by the Fundamental Research Funds for the Central Universities(WK2060190102)+1 种基金by the Central Leading Local Science and Technology Development Special Fund Project(YDZX20191400002636)by the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(STIP 2020L0695)。
文摘Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of active and stable non-noble metal electrocatalysts for MOR is desired,but remains a challenge.Herein,we report a simple strategy to make copper nanocrystal/nitrogen-doped carbon(Cu/N-C)monoliths,which can serve as active and robust electrodes for MOR.Copper nanocrystals were electrochemically deposited onto a conductive polyaniline hydrogel and calcined to form Cu/N-C monolith,where the active copper nanocrystals are protected by nitrogen-doped carbon.Owing to their extremely high electrical conductivity(1.25 × 10^(5) S cm^(-1)) and mechanical robustness,these Cu/N-C monoliths can be directly used as electrodes for MOR,without using substrates or additives.The optimal Cu/N-C(FT)@500 monolith shows a high MOR activity of 189 mA cm^(-2) at 0.6 V vs.SCE in alkaline methanol solution,superior to most of reported Cu-based MOR catalysts.Cu/N-C(FT)@500 also presents a better stability than Pt/C catalyst in the long-term MOR test at high current densities.Upon carbon monoxide(CO) poisoning,Cu/N-C(FT)@500 retains 96% of its MOR activity,far exceeding the performance of Pt/C catalyst(61% retention).Owing to its facile synthesis,outstanding activity,high stability and mechanical robustness,Cu/N-C(FT)@500 monolith is promising as a low-cost,efficient and CO-resistant electrocatalyst for MOR.