The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was a...The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was analyzed using the first-order irreversible reaction,following the shrinking unreacted nucleus model.The results demonstrate that VTM pellets prepared with 3Co-binder exhibit a faster oxidation rate than those with F-binder across the temperatures ranging from 1073 to 1473 K.In both cases,the oxidation process was controlled by an interfacial chemical reaction during the pre-oxidation stage and by internal diffusion during the mid-oxidation stage.The type of binder did not influence the primary oxidation control mechanism of the VTM pellets.However,the apparent rate constants in the pre-oxidation stage and the internal diffusion coefficients in the mid-oxidation stage were higher for pellets with 3Co-binder compared to those with F-binder.The apparent activation energies for the 3Co-binder pellets were similar to those of bentonite,indicating favorable kinetic conditions without negative impacts on the oxidation process.Nonetheless,it is important to note that pellets with F-binder required a longer oxidation time than those with 3Co-binder.展开更多
The factors affecting the oxidation degree of vanadium–titanium magnetite (VTM) pellets were analyzed via the isothermal oxidation experiment. Furthermore, the oxidation kinetics of VTM pellets were explored through ...The factors affecting the oxidation degree of vanadium–titanium magnetite (VTM) pellets were analyzed via the isothermal oxidation experiment. Furthermore, the oxidation kinetics of VTM pellets were explored through linear fitting to the kinetic equations based on the shrinking unreacted-core model. The results reveal that VTM pellets undergo oxidation in three distinct phases: pre-oxidation, mid-oxidation, and final stable phase. Notably, the mid-oxidation phase is absent in magnetite oxidation. The shrinking unreacted-core model has been proven to be suitable for modeling the process of oxidizing VTM pellets. In the pre-oxidation stage, the rate-controlling step is determined by both the oxidation temperature and the effective oxygen concentration. The influence of the effective oxygen concentration on the rate of oxidation is more pronounced at temperatures between 1073 and 1273 K, especially when the oxygen content falls below 15 vol.%. For the production of oxidized VTM pellets, it is necessary to maintain a preheating temperature above 1173 K (to accelerate the oxidation reaction) and below 1473 K (to prevent the swift formation of compact Fe2TiO5 at the shell of the pellet) in an oxygen-enriched atmosphere.展开更多
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ...In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.展开更多
The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscop...The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscope,differential scanning calorimeter(DSC)analysis,X-ray diffraction(XRD)analysis,scanning electron microscope(SEM)observation,and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the weight gain and oxidation rate of AZ80 are reduced significantly,the initiation form and propagation of cracks in oxide layer are changed.Compact and protective oxide layer forms on alloy surface with Y or Nd addition.And the activation energies of AZ80,AZ80-0.32Y and AZ8O-0.38Nd alloys calculated via Arrhenius equation are 82.556 kJ/mol,177.148kJ/mol and 136.738 kJ/mol,respectively.展开更多
The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of S...The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of SPHC for 240 min under air condition, and the temperature range was from 500 to 900 ℃. Scanning electron microscope (SEM) was used to observe cross-sectional scale morphology and analyze composition distribution of oxide scales. The morphology of oxide scale was classical three-layer structure. Fe2 03 developed as whiskers at the outermost lay- er, and interlayer was perforated-plate Fe3 04 while innermost layer was pyramidal FeO. From the oxidation curves, the oxidation mass gain per unit area with time was of parabolic relation and oxidation rate slowed down. On the ba- sis of experimental data, the isothermal oxidation kinetics model was derived and oxidation activation energy of SPHC steel was 127. 416 kJ/mol calculated from kinetics data.展开更多
MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 ca...MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.展开更多
In coal mining areas,the ambient atmospheric and aqueous oxidation of pyrite minerals(FeS2)associated with coal as well as the other accompanying strata is significant in understanding the extent of acid mine drainage...In coal mining areas,the ambient atmospheric and aqueous oxidation of pyrite minerals(FeS2)associated with coal as well as the other accompanying strata is significant in understanding the extent of acid mine drainage(AMD),the cause of severe environmental pollution.Therefore,in this paper,the oxidation kinetics of the coal-associated pyrite(CAPy)present in a coal sample(TpHM1)has been studied via aqueous leaching depyritization experiments at variety of temperatures and time intervals without the incorporation of any oxidizer.The outcomes obtained are juxtaposed with the standard pyrite mineral(SPM)oxidation at the same experimental conditions.Also,the coal and SPM slurry residues and filtrates obtained after aqueous leaching at 25℃ and 90℃ for 0 h and 24 h,respectively,were extensively analyzed through high-resolution transmission electron microscopy(HR-TEM),Powder X-ray diffraction(P-XRD),and X-ray-photoelectron spectroscopy(XPS)for evaluation of the mineralogical composition and proportions of iron and sulfur components during progression of the oxidation reaction.Both the reactions obey pseudo first-order kinetics during pyrite(FeS_(2))oxidation but a significant difference in the experimentally found activation energies(E_(a))and rate constants(k)values of oxidation kinetics of both CAPy and SPM may be attributed to the varied geochemical compositions of the coal associated pyrite(CAPy).The rate constant for CAPy is much greater than that of SPM implying a higher Ea around 10.838 kJ/mol for SPM as compared to 1.941 kJ/mol for CAPy.The CAPy in coal(TpHM1)is more susceptible to atmospheric oxidation than that of SPM,leading to the formation of acid mine drainage with lower pH.In this paper,the pH values on the basis of stoichiometric pyrite oxidation reaction were calculated and compared with the pH values obtained after aqueous leaching of CAPy to interpret the extent of acid formation and pyrite dissolution.Hence,with the assistance of the current study,further studies on the effects of mineral impurities,whereabouts of pyrite minerals in coal seams,the significance of compositional differences in the CAPy,the effect of metal oxides,and the role of alkalinity producing neutralizing agents of coal in the oxidative dissolution process of pyrite can be investigated.展开更多
The utilization of ironsand for preparing oxidized pellets poses challenges,including slow oxidation and low consolidation strength.The effects and function mechanisms of high-pressure grinding roll(HPGR)pretreatment ...The utilization of ironsand for preparing oxidized pellets poses challenges,including slow oxidation and low consolidation strength.The effects and function mechanisms of high-pressure grinding roll(HPGR)pretreatment on the oxidation and consolidation of ironsand pellets were investigated,and the energy utilization efficiency of HPGR with different roller pressure intensities was evaluated.The results indicate that HPGR pretreatment at 8 MPa improves the ironsand properties,with the specific surface area increasing by 740 cm^(2) g^(-1) and mechanical energy storage increasing by 2.5 kJ mol^(-1),which is conducive to oxidation and crystalline connection of particles.As roller pressure intensity increases to 16 MPa,more mechanical energy of HPGR is applied for crystal activation,with mechanical energy storage further rising by 18.1 kJ mol^(-1).The apparent activation energy for pellet oxidation initially decreases and then increases,reaching a minimum at 12 MPa.Simultaneously,the roasted pellets porosity decreases by 2.8%,while the compressive strength increases by 789 N.At higher roller pressure intensity,the densely connected structure between particles impedes gas diffusion within the pellets,diminishing the beneficial effects of HPGR on pellet oxidation.Moreover,excessive roller pressure intensity decreases the HPGR energy utilization efficiency.The optimal HPGR roller pressure intensity for ironsand is 12 MPa,at which the specific surface area increases by 790 cm^(2) g^(-1),mechanical energy storage increases by 10.6 kJ mol^(-1),the compressive strength of roasted pellets rises to 2816 N,and the appropriate preheating and roasting temperatures decrease by 250 and 125°C,respectively.展开更多
In order to figure out the oxidation behavior of steels during heating,five micro-alloyed steels were subjected to continuous and isothermal oxidation using the thermo gravimetric analyzer and the Gleeble-3500thermo-m...In order to figure out the oxidation behavior of steels during heating,five micro-alloyed steels were subjected to continuous and isothermal oxidation using the thermo gravimetric analyzer and the Gleeble-3500thermo-mechanical simulator.The microstructure of oxide scales,especially the thickness fractions of Fe2O3,Fe3O4 and FeO layers,was analyzed using the scanning electron microscope(SEM),electron probe microanalyzer(EPMA)and electron backscattered diffraction(EBSD)techniques.The micro-alloyed steels containing alloying elements(Si,Cr,Ni and Cu)show a higher oxidation resistance compared with the low carbon steel.It is found that alloying elements accumulated at scale/substrate interface during high temperature oxidation.Alloying elements function in two ways in the oxidation of steels:one is enhancing the scale/substrate interface and consequently suppressing the blister of scales;and the other is impeding the outward diffusion of iron cations from substrate to scales,resulting in the decrease of oxidation rate.As the diffusion of iron cations is impeded,the thickness fractions of Fe2O3 and Fe3O4of micro-alloyed steels are more than those of low carbon steels.展开更多
Ni-based superalloys added with comparably higher concentrations of single-doped Hf and co-doped Hf/Y are prepared by vacuum induction melting(VIM).The oxidation properties up to 300 h at 900℃,1000℃,and 1100℃ are i...Ni-based superalloys added with comparably higher concentrations of single-doped Hf and co-doped Hf/Y are prepared by vacuum induction melting(VIM).The oxidation properties up to 300 h at 900℃,1000℃,and 1100℃ are investigated.The undoped alloy exhibited a minimum oxidation rate at 900℃ and 1000℃.The co-doped alloy showed a higher oxidation rate;however,it possesses better scale adhesion,and no spallation occurs.Hf-doped alloy showed a lower oxidation rate and better scale adhesion at 900℃ and 1000℃,but exhibited a shorter lifetime at 1100℃.The spallation of the Hf-doped alloy is attributed to the precipitation of the HfO2 in and beneath the oxide scale.The spallation in the undoped alloy is accredited to the thermal expansion mismatch between the growing oxide scale and superalloy substrate.Incorporating two reactive elements(REs)in alloy minimized the precipitation of RE oxide in the oxide scale,diminished internal oxidation in the alloy,and decreased oxide scale spallation.展开更多
Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An impor...Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information of decomposition rate. In this paper, the decomposition rate of dimethyl methylphosphonate(DMMP), which is similar to the nerve agent VX and GB(Sarin) in its structure, was investigated under SCWO conditions. The experiments were performed in an isothermal tubular reactor with a H2O2 as an oxidant. The reaction temperatures were ranged from 398 to 633℃ at a fixed pressure of 24 MPa. The conversion of DMMP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. It is found that the oxidative decomposition of DMMP proceeded rapidly and a high TOC decomposition up to 99.99% was obtained within 11 s at 555℃. On the basis of data derived from experiments, a global kinetic equation for the decomposition of DMMP was developed. The model predictions agreed well with the experimental data.展开更多
The oxidation pathway and kinetics of titania slag powders in air were analyzed using differential scanning calorimetry(DSC)and thermogravimetry(TG).The oxidation pathway of titania slag powder in air was divided into...The oxidation pathway and kinetics of titania slag powders in air were analyzed using differential scanning calorimetry(DSC)and thermogravimetry(TG).The oxidation pathway of titania slag powder in air was divided into three stages according to their three exothermic peaks and three corresponding mass gain stages indicated by the respective non-isothermal DSC and TG curves.The isothermal oxidation kinetics of high titania slag powders of different sizes were analyzed using the ln-ln analysis method.The results revealed that the entire isothermal oxidation process comprises two stages.The kinetic mechanism of the first stage can be described as f(α) = 1.77(1-α) [-ln (1-α)]^((1.77-1)/1.77),f(α)= 1.97(1-α) [-ln (1-α)]^((1.97-1)/1.97),and f (α) = 1.18(1-α) [-ln (1-α)]^((1.18-1)/1.18).The kinetic mechanism of the second stage for all samples can be described as f (α)=1.5(1-α)^(2/3)[1-(1-α)^(1/3)]^(-1).The activation energies of titania slag powders with different sizes(d_(1)<0.075 mm,0.125 mm<d_(2)<0.150 mm,and 0.425 mm<d_(3)<0.600 mm)for different reaction degrees were calculated.For the given experimental conditions,the rate-controlling step in the first oxidation stage of all the samples is a chemical reaction.The rate-controlling steps of the second oxidation stage are a chemical reaction and internal diffusion(for powders d_(1)<0.075 mm)and internal diffusion(for powders 0.125 mm<d_(2)<0.150 mm and 0.425 mm<d_(3)<0.600 mm).展开更多
Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process...Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess.展开更多
The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concen...The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.展开更多
A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sampl...A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sample was typical of superparamagnetic material.The samples were characterized by transmission electron microscope,and it is found that the particles are of small size.The Fe_3O_4/GO MNPs were further used as an adsorbent to remove Rhodamine B.The effects of initial pH of the solution,the dosage of adsorbent,temperature,contact time and the presence of interfering dyes on adsorption performance were investigated as well.The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudosecond-order kinetic model respectively.The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B.And the adsorption process was endothermic in nature.Furthermore,the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field.And the used particles could be regenerated and recycled easily.The magnetic composite could find potential applications for the removal of dye pollutants.展开更多
The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry.The oxidation kinetic model function and kinetic parameters of appare...The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry.The oxidation kinetic model function and kinetic parameters of apparent activation energy(Ea)were evaluated by Málek and Starink methods.The results show that under air atmosphere,the oxidation process of ilmenite concentrate is composed of three stages,and the chemical reaction(G(α)=1-(1-α)~2,whereαis the conversion degree)plays an important role in the whole oxidation process.At the first stage(α=0.05-0.30),the oxidation process is controlled gradually by secondary chemical reaction with increasing conversion degree.At the second stage(α=0.30-0.50),the oxidation process is completely controlled by the secondary chemical reaction(G(α)=1-(1-α)~2).At the third stage(α=0.50-0.95),the secondary chemical reaction weakens gradually with increasing conversion degree,and the oxidation process is controlled gradually by a variety of functions;the kinetic equations are G(α)=(1-α)^(-1)(β=10K·min^(-1),whereβis heating rate),G(α)=(1-α)^(-1/2)(β=15-20K·min^(-1)),and G(α)=(1-α)^(-2)(β=25K·min^(-1)),respectively.For the whole oxidation process,the activation energies follow a parabolic law with increasing conversion degree,and the average activation energy is 160.56kJ·mol^(-1).展开更多
A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, a...A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, and the underiying chemical reaction mechanisms are dis-cussed. It is also found that the effects of diffusion processes in the period of the lifetime of Oatoms are not important to microdischarge channels with a large radius, i.e. larger than l50 μm.展开更多
In order to establish the kinetics of oxidation of artificial magnetite pellets, we comprehensively studied kinetics of the oxidation of artificial magnetite pellets from low temperature to high temperature using chem...In order to establish the kinetics of oxidation of artificial magnetite pellets, we comprehensively studied kinetics of the oxidation of artificial magnetite pellets from low temperature to high temperature using chemical analysis. The results show that when the oxidation temperature is below 1 073 K(800 ℃), the reaction is controlled by the step of internal diffusion, and the model function is 23 G(a) =1-3(1-x) ^(2/3)+2(1-x)(α, reaction degree). When the temperature is above 1 073 K(800 ℃), the reaction mechanism was chemical reaction, and the model function is 13 G(a) =1-(1-x)^(1/3). The apparent activation energy for the oxidation of artificial magnetite pellets was also determined, which was 8.90 kJ/mol for the low temperature and 67.79 kJ/mol for the high temperature. Based on the derived kinetic equation for the oxidation of artificial magnetite pellets, the calculated value is consistent with the experimental data. Compared with that of nature magnetite pellets, the apparent activation energy is decreased obviously, which indicates that the artificial magnetite pellets are oxidized more easily than nature magnetite pellets.展开更多
1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isi...1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isimposed by oxidation and degradation ofcreep strength,and relatively little know-展开更多
The kinetics of oxidation of pyruvate by diperiodatoargentate( III) ion (DPA) has been studied spec-trophotometrically in alkaline medium. It was found that the reaction order with respect to both DPA and pyruvate is ...The kinetics of oxidation of pyruvate by diperiodatoargentate( III) ion (DPA) has been studied spec-trophotometrically in alkaline medium. It was found that the reaction order with respect to both DPA and pyruvate is unity and the rate equation can be expressed asThe rate increases with the increase in [OH ] and decreases with the increase in [periodate]. There is a positive ionic strength effect in this reaction system. A mechanism has been proposed to explain the experimental results. The observed activation parameters are presented.展开更多
基金supported by National Natural Science Foundation of China(No.52204302)Young Elite Scientist Sponsorship Program by CAST(No.YESS20220533)Hunan Provincial Natural Science Foundation of China(No.2022JJ40625).
文摘The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was analyzed using the first-order irreversible reaction,following the shrinking unreacted nucleus model.The results demonstrate that VTM pellets prepared with 3Co-binder exhibit a faster oxidation rate than those with F-binder across the temperatures ranging from 1073 to 1473 K.In both cases,the oxidation process was controlled by an interfacial chemical reaction during the pre-oxidation stage and by internal diffusion during the mid-oxidation stage.The type of binder did not influence the primary oxidation control mechanism of the VTM pellets.However,the apparent rate constants in the pre-oxidation stage and the internal diffusion coefficients in the mid-oxidation stage were higher for pellets with 3Co-binder compared to those with F-binder.The apparent activation energies for the 3Co-binder pellets were similar to those of bentonite,indicating favorable kinetic conditions without negative impacts on the oxidation process.Nonetheless,it is important to note that pellets with F-binder required a longer oxidation time than those with 3Co-binder.
基金supported by the National Natural Science Foundation of China(No.52204302)Young Elite Scientist Sponsorship Program by CAST(No.YESS20220533)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2022JJ50274)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202103).
文摘The factors affecting the oxidation degree of vanadium–titanium magnetite (VTM) pellets were analyzed via the isothermal oxidation experiment. Furthermore, the oxidation kinetics of VTM pellets were explored through linear fitting to the kinetic equations based on the shrinking unreacted-core model. The results reveal that VTM pellets undergo oxidation in three distinct phases: pre-oxidation, mid-oxidation, and final stable phase. Notably, the mid-oxidation phase is absent in magnetite oxidation. The shrinking unreacted-core model has been proven to be suitable for modeling the process of oxidizing VTM pellets. In the pre-oxidation stage, the rate-controlling step is determined by both the oxidation temperature and the effective oxygen concentration. The influence of the effective oxygen concentration on the rate of oxidation is more pronounced at temperatures between 1073 and 1273 K, especially when the oxygen content falls below 15 vol.%. For the production of oxidized VTM pellets, it is necessary to maintain a preheating temperature above 1173 K (to accelerate the oxidation reaction) and below 1473 K (to prevent the swift formation of compact Fe2TiO5 at the shell of the pellet) in an oxygen-enriched atmosphere.
基金Project(51371104)supported by the National Nature Science Foundation of China
文摘In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.
基金the National Key Research and Development Program of China(No.2016YFB0301104)Nation Natural Science Foundation of China(No.51771043)Foundation of State Key Laboratory of Baiyunobo Rare Earth researches and Comprehensive Utilization,and Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscope,differential scanning calorimeter(DSC)analysis,X-ray diffraction(XRD)analysis,scanning electron microscope(SEM)observation,and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the weight gain and oxidation rate of AZ80 are reduced significantly,the initiation form and propagation of cracks in oxide layer are changed.Compact and protective oxide layer forms on alloy surface with Y or Nd addition.And the activation energies of AZ80,AZ80-0.32Y and AZ8O-0.38Nd alloys calculated via Arrhenius equation are 82.556 kJ/mol,177.148kJ/mol and 136.738 kJ/mol,respectively.
基金Sponsored by National Natural Science Foundation of China(51204047)National Key Technology Research and Development Program in 12th Five-year Plan of China(2011BAE13B04)The Fundamental Research Funds for the Central Universities of China(N100307006)
文摘The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of SPHC for 240 min under air condition, and the temperature range was from 500 to 900 ℃. Scanning electron microscope (SEM) was used to observe cross-sectional scale morphology and analyze composition distribution of oxide scales. The morphology of oxide scale was classical three-layer structure. Fe2 03 developed as whiskers at the outermost lay- er, and interlayer was perforated-plate Fe3 04 while innermost layer was pyramidal FeO. From the oxidation curves, the oxidation mass gain per unit area with time was of parabolic relation and oxidation rate slowed down. On the ba- sis of experimental data, the isothermal oxidation kinetics model was derived and oxidation activation energy of SPHC steel was 127. 416 kJ/mol calculated from kinetics data.
基金Project supported by the National key research and development program(2016YFC0204901)the National Natural Science Foundation of China(21576207)the introduction of talent and technology cooperation plan of Tianjin(14RCGFGX00849)
文摘MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.
基金Ministry of Earth Science(Govt.of India)(GPP-0364).
文摘In coal mining areas,the ambient atmospheric and aqueous oxidation of pyrite minerals(FeS2)associated with coal as well as the other accompanying strata is significant in understanding the extent of acid mine drainage(AMD),the cause of severe environmental pollution.Therefore,in this paper,the oxidation kinetics of the coal-associated pyrite(CAPy)present in a coal sample(TpHM1)has been studied via aqueous leaching depyritization experiments at variety of temperatures and time intervals without the incorporation of any oxidizer.The outcomes obtained are juxtaposed with the standard pyrite mineral(SPM)oxidation at the same experimental conditions.Also,the coal and SPM slurry residues and filtrates obtained after aqueous leaching at 25℃ and 90℃ for 0 h and 24 h,respectively,were extensively analyzed through high-resolution transmission electron microscopy(HR-TEM),Powder X-ray diffraction(P-XRD),and X-ray-photoelectron spectroscopy(XPS)for evaluation of the mineralogical composition and proportions of iron and sulfur components during progression of the oxidation reaction.Both the reactions obey pseudo first-order kinetics during pyrite(FeS_(2))oxidation but a significant difference in the experimentally found activation energies(E_(a))and rate constants(k)values of oxidation kinetics of both CAPy and SPM may be attributed to the varied geochemical compositions of the coal associated pyrite(CAPy).The rate constant for CAPy is much greater than that of SPM implying a higher Ea around 10.838 kJ/mol for SPM as compared to 1.941 kJ/mol for CAPy.The CAPy in coal(TpHM1)is more susceptible to atmospheric oxidation than that of SPM,leading to the formation of acid mine drainage with lower pH.In this paper,the pH values on the basis of stoichiometric pyrite oxidation reaction were calculated and compared with the pH values obtained after aqueous leaching of CAPy to interpret the extent of acid formation and pyrite dissolution.Hence,with the assistance of the current study,further studies on the effects of mineral impurities,whereabouts of pyrite minerals in coal seams,the significance of compositional differences in the CAPy,the effect of metal oxides,and the role of alkalinity producing neutralizing agents of coal in the oxidative dissolution process of pyrite can be investigated.
基金financially supported by the General Program of National Natural Science Foundation of China(No.52174330)Hunan Provincial Innovation Foundation for Postgraduate(No.QL20220069)Postgraduate Innovative Project of Central South University(No.1053320214756).
文摘The utilization of ironsand for preparing oxidized pellets poses challenges,including slow oxidation and low consolidation strength.The effects and function mechanisms of high-pressure grinding roll(HPGR)pretreatment on the oxidation and consolidation of ironsand pellets were investigated,and the energy utilization efficiency of HPGR with different roller pressure intensities was evaluated.The results indicate that HPGR pretreatment at 8 MPa improves the ironsand properties,with the specific surface area increasing by 740 cm^(2) g^(-1) and mechanical energy storage increasing by 2.5 kJ mol^(-1),which is conducive to oxidation and crystalline connection of particles.As roller pressure intensity increases to 16 MPa,more mechanical energy of HPGR is applied for crystal activation,with mechanical energy storage further rising by 18.1 kJ mol^(-1).The apparent activation energy for pellet oxidation initially decreases and then increases,reaching a minimum at 12 MPa.Simultaneously,the roasted pellets porosity decreases by 2.8%,while the compressive strength increases by 789 N.At higher roller pressure intensity,the densely connected structure between particles impedes gas diffusion within the pellets,diminishing the beneficial effects of HPGR on pellet oxidation.Moreover,excessive roller pressure intensity decreases the HPGR energy utilization efficiency.The optimal HPGR roller pressure intensity for ironsand is 12 MPa,at which the specific surface area increases by 790 cm^(2) g^(-1),mechanical energy storage increases by 10.6 kJ mol^(-1),the compressive strength of roasted pellets rises to 2816 N,and the appropriate preheating and roasting temperatures decrease by 250 and 125°C,respectively.
基金Item Sponsored by National High-tech Research and Development Program(863Program)of China(2012AA03A508)National Natural Science Foundation of China(51474031)
文摘In order to figure out the oxidation behavior of steels during heating,five micro-alloyed steels were subjected to continuous and isothermal oxidation using the thermo gravimetric analyzer and the Gleeble-3500thermo-mechanical simulator.The microstructure of oxide scales,especially the thickness fractions of Fe2O3,Fe3O4 and FeO layers,was analyzed using the scanning electron microscope(SEM),electron probe microanalyzer(EPMA)and electron backscattered diffraction(EBSD)techniques.The micro-alloyed steels containing alloying elements(Si,Cr,Ni and Cu)show a higher oxidation resistance compared with the low carbon steel.It is found that alloying elements accumulated at scale/substrate interface during high temperature oxidation.Alloying elements function in two ways in the oxidation of steels:one is enhancing the scale/substrate interface and consequently suppressing the blister of scales;and the other is impeding the outward diffusion of iron cations from substrate to scales,resulting in the decrease of oxidation rate.As the diffusion of iron cations is impeded,the thickness fractions of Fe2O3 and Fe3O4of micro-alloyed steels are more than those of low carbon steels.
基金funded by the National Natural Science Foundation of China under Grant No 51971214.
文摘Ni-based superalloys added with comparably higher concentrations of single-doped Hf and co-doped Hf/Y are prepared by vacuum induction melting(VIM).The oxidation properties up to 300 h at 900℃,1000℃,and 1100℃ are investigated.The undoped alloy exhibited a minimum oxidation rate at 900℃ and 1000℃.The co-doped alloy showed a higher oxidation rate;however,it possesses better scale adhesion,and no spallation occurs.Hf-doped alloy showed a lower oxidation rate and better scale adhesion at 900℃ and 1000℃,but exhibited a shorter lifetime at 1100℃.The spallation of the Hf-doped alloy is attributed to the precipitation of the HfO2 in and beneath the oxide scale.The spallation in the undoped alloy is accredited to the thermal expansion mismatch between the growing oxide scale and superalloy substrate.Incorporating two reactive elements(REs)in alloy minimized the precipitation of RE oxide in the oxide scale,diminished internal oxidation in the alloy,and decreased oxide scale spallation.
文摘Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information of decomposition rate. In this paper, the decomposition rate of dimethyl methylphosphonate(DMMP), which is similar to the nerve agent VX and GB(Sarin) in its structure, was investigated under SCWO conditions. The experiments were performed in an isothermal tubular reactor with a H2O2 as an oxidant. The reaction temperatures were ranged from 398 to 633℃ at a fixed pressure of 24 MPa. The conversion of DMMP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. It is found that the oxidative decomposition of DMMP proceeded rapidly and a high TOC decomposition up to 99.99% was obtained within 11 s at 555℃. On the basis of data derived from experiments, a global kinetic equation for the decomposition of DMMP was developed. The model predictions agreed well with the experimental data.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFC1900500)Graduate Research and Innovation Foundation of Chongqing,China(No.CYB17002).
文摘The oxidation pathway and kinetics of titania slag powders in air were analyzed using differential scanning calorimetry(DSC)and thermogravimetry(TG).The oxidation pathway of titania slag powder in air was divided into three stages according to their three exothermic peaks and three corresponding mass gain stages indicated by the respective non-isothermal DSC and TG curves.The isothermal oxidation kinetics of high titania slag powders of different sizes were analyzed using the ln-ln analysis method.The results revealed that the entire isothermal oxidation process comprises two stages.The kinetic mechanism of the first stage can be described as f(α) = 1.77(1-α) [-ln (1-α)]^((1.77-1)/1.77),f(α)= 1.97(1-α) [-ln (1-α)]^((1.97-1)/1.97),and f (α) = 1.18(1-α) [-ln (1-α)]^((1.18-1)/1.18).The kinetic mechanism of the second stage for all samples can be described as f (α)=1.5(1-α)^(2/3)[1-(1-α)^(1/3)]^(-1).The activation energies of titania slag powders with different sizes(d_(1)<0.075 mm,0.125 mm<d_(2)<0.150 mm,and 0.425 mm<d_(3)<0.600 mm)for different reaction degrees were calculated.For the given experimental conditions,the rate-controlling step in the first oxidation stage of all the samples is a chemical reaction.The rate-controlling steps of the second oxidation stage are a chemical reaction and internal diffusion(for powders d_(1)<0.075 mm)and internal diffusion(for powders 0.125 mm<d_(2)<0.150 mm and 0.425 mm<d_(3)<0.600 mm).
文摘Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess.
基金Project(51364009) supported by the National Natural Science Foundation of ChinaProject(JSU071302) supported by the Construct Program of the Key Discipline in Hunan Province,ChinaProject(2015JJ2115) supported by the Natural Science Foundation of Hunan Province,China
文摘The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.
基金Supported by the National Natural Science Foundation of China(21107143,21207033)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(CZY15003)
文摘A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles(Fe_3O_4/CO MNPs).The hysteresis loop of Fe_3O_4/GO MNPs demonstrated that the sample was typical of superparamagnetic material.The samples were characterized by transmission electron microscope,and it is found that the particles are of small size.The Fe_3O_4/GO MNPs were further used as an adsorbent to remove Rhodamine B.The effects of initial pH of the solution,the dosage of adsorbent,temperature,contact time and the presence of interfering dyes on adsorption performance were investigated as well.The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudosecond-order kinetic model respectively.The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B.And the adsorption process was endothermic in nature.Furthermore,the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field.And the used particles could be regenerated and recycled easily.The magnetic composite could find potential applications for the removal of dye pollutants.
基金supported by the National Natural Science Foundation of China(Grant No.51234010)Special Fund for Basic Scientific Research in Colleges and Universities of the Central Business (No.0903005203413)
文摘The non-isothermal oxidation experiments of ilmenite concentrate were carried out at various heating rates under air atmosphere by thermogravimetry.The oxidation kinetic model function and kinetic parameters of apparent activation energy(Ea)were evaluated by Málek and Starink methods.The results show that under air atmosphere,the oxidation process of ilmenite concentrate is composed of three stages,and the chemical reaction(G(α)=1-(1-α)~2,whereαis the conversion degree)plays an important role in the whole oxidation process.At the first stage(α=0.05-0.30),the oxidation process is controlled gradually by secondary chemical reaction with increasing conversion degree.At the second stage(α=0.30-0.50),the oxidation process is completely controlled by the secondary chemical reaction(G(α)=1-(1-α)~2).At the third stage(α=0.50-0.95),the secondary chemical reaction weakens gradually with increasing conversion degree,and the oxidation process is controlled gradually by a variety of functions;the kinetic equations are G(α)=(1-α)^(-1)(β=10K·min^(-1),whereβis heating rate),G(α)=(1-α)^(-1/2)(β=15-20K·min^(-1)),and G(α)=(1-α)^(-2)(β=25K·min^(-1)),respectively.For the whole oxidation process,the activation energies follow a parabolic law with increasing conversion degree,and the average activation energy is 160.56kJ·mol^(-1).
文摘A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, and the underiying chemical reaction mechanisms are dis-cussed. It is also found that the effects of diffusion processes in the period of the lifetime of Oatoms are not important to microdischarge channels with a large radius, i.e. larger than l50 μm.
基金Funded by the National Natural Science Foundation of China(51474161)
文摘In order to establish the kinetics of oxidation of artificial magnetite pellets, we comprehensively studied kinetics of the oxidation of artificial magnetite pellets from low temperature to high temperature using chemical analysis. The results show that when the oxidation temperature is below 1 073 K(800 ℃), the reaction is controlled by the step of internal diffusion, and the model function is 23 G(a) =1-3(1-x) ^(2/3)+2(1-x)(α, reaction degree). When the temperature is above 1 073 K(800 ℃), the reaction mechanism was chemical reaction, and the model function is 13 G(a) =1-(1-x)^(1/3). The apparent activation energy for the oxidation of artificial magnetite pellets was also determined, which was 8.90 kJ/mol for the low temperature and 67.79 kJ/mol for the high temperature. Based on the derived kinetic equation for the oxidation of artificial magnetite pellets, the calculated value is consistent with the experimental data. Compared with that of nature magnetite pellets, the apparent activation energy is decreased obviously, which indicates that the artificial magnetite pellets are oxidized more easily than nature magnetite pellets.
文摘1.IntroductionThe research of the TD1 and TD2 al-loys based on intermetallic compound TiAl,which possesses high temperature capabilityfrom 650 to 700℃ was conducted.However,the limitation used at high temperature isimposed by oxidation and degradation ofcreep strength,and relatively little know-
文摘The kinetics of oxidation of pyruvate by diperiodatoargentate( III) ion (DPA) has been studied spec-trophotometrically in alkaline medium. It was found that the reaction order with respect to both DPA and pyruvate is unity and the rate equation can be expressed asThe rate increases with the increase in [OH ] and decreases with the increase in [periodate]. There is a positive ionic strength effect in this reaction system. A mechanism has been proposed to explain the experimental results. The observed activation parameters are presented.