期刊文献+
共找到4,007篇文章
< 1 2 201 >
每页显示 20 50 100
Fe-loaded S,N co-doped carbon catalyst for oxygen reduction reaction with enhanced electrocatalytic activity and durability
1
作者 Shengzhi He Chunwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期315-321,共7页
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-... Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications. 展开更多
关键词 zinc-air batteries oxygen reduction reaction iron-loaded nitrogen-doped carbon sulfur-doping
在线阅读 下载PDF
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
2
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:2
3
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Interfacial Pt-N coordination for promoting oxygen reduction reaction 被引量:1
4
作者 Jialin Cai Yizhe Chen +5 位作者 Ruiwen Zhang Cheng Yuan Zeyu Jin Yongting Chen Shiming Zhang Jiujun Zhang 《Chinese Chemical Letters》 2025年第2期481-485,共5页
Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange... Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability. 展开更多
关键词 Oxygen reduction reaction N-doped carbon PLATINUM Pt-N Theoretical calculations
原文传递
Understanding amorphous PrO_(x)-based N-doped carbon catalyst as an efficient electrocatalyst for oxygen reduction reaction 被引量:1
5
作者 Xiao Man Ying Chang +2 位作者 Shaohong Guo Meilin Jia Jingchun Jia 《Journal of Rare Earths》 2025年第1期73-80,I0003,共9页
The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-bas... The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-based catalyst PrO_(x)-NC,and optimized the calcination temperature and proportion.The PrO_(x)-NC-900 catalyst has high durability and activity and exhibits superior ORR performance in alkaline electrolytes with an onset potential(E_(0))of 0.96 V and a half-wave potential(E_(1/2))of 0.85 V.The research results indicate that the ORR performance of rare earth oxide composite carbon catalysts can be improved by adjusting oxygen vacancies(Ov).In addition,high specific surface area,N rich defect carbon.increased oxygen vacancies,and the synergistic effect of oxygen vacancies and N-doped carbon interfacial layer play a significant part in the enhancement of ORR.The performance of the zinc air battery assembled with PrO_(x)-NC-900 is significantly improved,and rare earth oxides and carbon frameworks originating from metal organic frameworks(MOFs)contribute to the oxygen electrocatalyst and electron transfer rate of the zinc air battery.This catalyst provides promising information for the development of rare earth metal oxide nanostructures as potential candidate materials for ORR in alkaline media. 展开更多
关键词 Rare earths Metal-organic framework Oxygen reduction reaction Zn-air batteries
原文传递
Ordering Degree Regulation of Pt_(2)NiCo Intermetallics for Efficient Oxygen Reduction Reaction
6
作者 Chen-Hao Zhang Han-Yu Hu +3 位作者 Jun-Hao Yang Qian Zhang Chang Yang De-Li Wang 《电化学(中英文)》 北大核心 2025年第4期12-23,共12页
Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometri... Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometrical effects as well as stronger intermetallic interactions due to the ordered arrangement of metal atoms,thus exhibiting superior electrocata-lytic activity and durability.However,quantitatively analyzing the ordering degree of IMC and exploring the correlation between the ordering degree and ORR activity remains extremely challenging.Herein,a series of ternary Pt_(2)NiCo interme-tallic catalysts(o-Pt_(2)NiCo)with different ordering degree were synthesized by annealing temperature modulation.Among them,the o-Pt_(2)NiCo which annealed at 800℃for two hours exhibits the highest ordering degree and the optimal ORR ac-tivity,which the mass activity of o-Pt_(2)NiCo is 1.8 times and 2.8 times higher than that of disordered Pt_(2)NiCo alloy and Pt/C.Furthermore,the o-Pt_(2)NiCo still maintains 70.8%mass activity after 30,000 potential cycles.Additionally,the ORR activity test results for Pt_(2)NiCo IMC with different ordering degree also provide a positive correlation between the ordering degree and ORR activity.This work provides a prospective design direction for ternary Pt-based electrocatalysts. 展开更多
关键词 Fuel cell Oxygen reduction reaction ELECTROCATALYSIS Intermetallic compound Ordering degree
在线阅读 下载PDF
A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction
7
作者 Pei-Pei He Jin-Hua Shi +6 位作者 Xiao-Yu Li Ming-Jie Liu Zhou Fang Jing He Zhong-Jian Li Xin-Sheng Peng Qing-Gang He 《电化学(中英文)》 北大核心 2025年第1期31-40,共10页
The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNT... The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2). 展开更多
关键词 Metal organic framework CNT intercalated ELECTROCATALYSIS Oxygen reduction reaction Microbial fuel cell
在线阅读 下载PDF
Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping
8
作者 Chang Lan Jing-Sen Bai +8 位作者 Xin Guan Shuo Wang Nan-Shu Zhang Yu-Qing Cheng Jin-Jing Tao Yu-Yi Chu Mei-Ling Xiao Chang-Peng Liu Wei Xing 《电化学(中英文)》 北大核心 2025年第9期56-68,共13页
The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this wor... The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications. 展开更多
关键词 Oxygen reduction reaction Proton exchange membrane fuel cell Single-atom catalyst Co-N-C Boron doping
在线阅读 下载PDF
Local Electric Fields Coupled with Cl^(−)Fixation Strategy for Improving Seawater Oxygen Reduction Reaction Performance
9
作者 Yu-Rong Liu Miao Zhang +8 位作者 Yan-Hui Yu Ya-Lin Liu Jing Li Xiao-Dong Shi Zhen-Ye Kang Dao-Xiong Wu Peng Rao Ying Liang Xin-Long Tian 《电化学(中英文)》 北大核心 2025年第9期46-55,共10页
Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field c... Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity. 展开更多
关键词 Seawater zinc-air battery Oxygen reduction reaction Local electric field Chloride ion fixation strategy Sin-gle-atom catalyst
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
10
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface
11
作者 Yao Yao Juping Xu Minhua Shao 《Chinese Journal of Catalysis》 2025年第6期271-278,共8页
Hydrogen evolution reaction(HER)is unavoidable in many electrochemical synthesis systems,such as CO_(2)reduction,N2reduction,and H_(2)O_(2)synthesis.It makes those electrochemical reactions with multiple electron-prot... Hydrogen evolution reaction(HER)is unavoidable in many electrochemical synthesis systems,such as CO_(2)reduction,N2reduction,and H_(2)O_(2)synthesis.It makes those electrochemical reactions with multiple electron-proton transfers more complex when determining kinetics and mass transfer information.Understanding how HER competes with other electrochemical reduction reactions is crucial for both fundamental studies and system performance improvements.In this study,we employed the oxygen reduction reaction(ORR)as a model reaction to investigate HER competition on a polycrystalline-Au surface,using a rotating ring and disk electrode.It’s proved that water molecules serve as the proton source for ORR in alkaline,neutral,and even acidic electrolytes,and a 4-electron process can be achieved when the overpotential is sufficiently high.The competition from H⁺reduction becomes noticeable at the H⁺concentration higher than 2 mmol L^(–1)and intensi-fies as the H^(+)concentration increases.Based on the electrochemical results,we obtained an equivalent circuit diagram for the ORR system with competition from the H+reduction reaction,showing that these reactions occur in parallel and compete with each other.Electrochemical impedance spectroscopy measurements further confirm this argument.Additionally,we discover that the contribution of H+mass transfer to the total H^(+)reduction current is significant and comparable to the kinetic current.We believe this work will deepen our understanding of HER and its competition in electrochemical reduction systems. 展开更多
关键词 Hydrogen evolution reaction Oxygen reduction reaction H⁺reduction competition Rotating ring and disk electrode Proton source
在线阅读 下载PDF
Rare earth-rich sublayer tuned Pd-skin for methanol and CO tolerance oxygen reduction and hydrogen oxidation reaction
12
作者 Felix Kwofie Jinfan Chen +8 位作者 Yujing Liu Ying Zhang Junsong Zhang Yang Yang Quentin Meyer Chuan Zhao Zhenjiang He Yunjiao Li Yi Cheng 《Advanced Powder Materials》 2025年第4期129-141,共13页
Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poiso... Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poisoning induced by intermediate species.This study introduces a new class of palladium-based rare earth(RE)alloys with exceptional resistance to methanol for the oxygen reduction reaction(ORR)and outstanding resistance to carbon monoxide poisoning for the hydrogen oxidation reaction(HOR).The PdEr catalyst achieved unparalleled ORR activity amongst the Pd-based rare earth alloys and demonstrated remarkable resistance to methanol poisoning,which is two orders of magnitude higher than commercial Pt/C catalysts.Furthermore,the PdEr catalyst shows high hydrogen oxidation activity under 100 ppm CO.Comprehensive analysis demonstrates that the RE element-enriched sublayer tuning of the Pd-skin's surface strain is responsible for the enhanced ORR and HOR capabilities.This modification allows for precise control over the adsorption strength of critical intermediates while concurrently diminishing the adsorption energy of methanol and CO on the PdEr surface. 展开更多
关键词 Palladium-rare earth Oxygen reduction reaction Methanol resistance Hydrogen oxidation reaction CO resistance
在线阅读 下载PDF
Regulating local electron transfer environment of covalent triazine frameworks through F,N co-modification towards optimized oxygen reduction reaction
13
作者 Quanyou Guo Yue Yang +6 位作者 Tingting Hu Hongqi Chu Lijun Liao Xuepeng Wang Zhenzi Li Liping Guo Wei Zhou 《Chinese Chemical Letters》 2025年第1期344-348,共5页
The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalyt... The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalytic active center.Therefore,the electronic conductivity is a vital parameter for oxygen reduction reaction(ORR).Covalent triazine frameworks(CTFs)have shown great potential application as electrocatalysts in ORR with a merit of the diverse building blocks.However,the intrinsic low conductivity and high impedance of CTFs could be significant setbacks in electrocatalytic application.Herein,CTFs were constructed by introducing F and N co-modification for efficient 2e^(-)ORR.Compared with the pristine CTF,the co-presence of F,N could increase the conductivity obviously by 1000-fold.As a result,F-N-CTF exhibits enhanced catalytic performance of H_(2)O_(2)generation and selectivity towards reaction pathways.This work reveals the importance of conductivity optimization for CTFs and provides guidance for designing high conductivity non-metallic organic semiconductor catalysts for 2e^(-)ORR. 展开更多
关键词 Covalent triazine frameworks CONDUCTIVITY Co-modification ELECTROCATALYSIS Oxygen reduction reaction
原文传递
Types,properties,and applications of non-precious oxygen reduction reaction electrocatalyst:A review
14
作者 Mahdi Soleimani Moghaddam Meysam Seyfi Kafshgari +2 位作者 Ali Bahari Leila Asadi Kafshgari Adeleh Jafari 《Journal of Energy Chemistry》 2025年第8期305-344,共40页
The main challenge preventing the broad commercial use of polymer electrolyte membrane fuel cells(PEMFCs)is the dependence on noble metals,specifically electrocatalyst(EC)based on platinum(Pt)at the cathode,which is i... The main challenge preventing the broad commercial use of polymer electrolyte membrane fuel cells(PEMFCs)is the dependence on noble metals,specifically electrocatalyst(EC)based on platinum(Pt)at the cathode,which is indispensable for assisting the oxygen reduction reaction(ORR)in fuel cells(FCs).Research on EC-containing non-noble metal(NNM)has been considerable over the past few decades to minimize costs and reduce the excessive loading of EC based on Pt.This review is aimed at improving the reliability and stability of non-precious metal EC.To achieve a feasible ORR,Pt-based EC is crucial for the widespread commercial applications of PEMFCs.The review emphasizes improving ORR performance,stability,and cost-effectiveness in catalysts that are not precious metals.The article examines the advancements in non-precious nanomaterial-based EC,highlighting different types that have improved ORR efficiency.The review suggests future possibilities and directions for further improvement in designing and constructing EC with high efficiency and low costs for PEMFCs. 展开更多
关键词 Fuel cells Oxygen reduction reaction ELECTROCATALYST Non-noble metal NANOMATERIAL
在线阅读 下载PDF
Regulating competing reaction pathways for efficient CO_(2) electroreduction in acidic conditions
15
作者 Lina Su Qingfeng Hua +4 位作者 Yanan Yang Hao Mei Jiayao Li Guang Feng Zhiqi Huang 《Journal of Energy Chemistry》 2025年第6期326-351,I0008,共27页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)converts CO_(2) into valuable chemicals by consuming renewable electricity at mild conditions,making it a promising approach to achieving carbon neutrality.Ho... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)converts CO_(2) into valuable chemicals by consuming renewable electricity at mild conditions,making it a promising approach to achieving carbon neutrality.However,the reaction of CO_(2) with hydroxide ions to form carbonates leads to low carbon utilization and energy efficiency in near-neutral or alkaline CO_(2)RR.The high concentration of protons in acidic media can effectively mitigate carbonate formation and deposition,thereby significantly minimizing carbon loss and energy consumption.Unfortunately,hydrogen evolution reaction(HER)is more kinetically favorable than CO_(2)RR in acidic media.Herein,we comprehensively overview recent progress in acidic CO_(2)RR and propose two strategies derived from the competing reaction pathways of HER and CO_(2)RR:one focuses on regulating the H+mass transport,while the other aims to modulate the intrinsic kinetic activity of CO_(2)RR.The two strategies are designed to compete for the limited active sites on the catalyst surface,inhibit side reactions,and enhance the activity and selectivity of CO_(2)RR.The representative approaches include modulating the interface electric field,constructing a local alkaline environment,and regulating competing adsorption sites.Finally,we also review the technical challenges and future perspectives of acidic CO_(2)RR coupled with membrane electrode assemblies(MEAs). 展开更多
关键词 CO_(2)reduction reaction Acidic electrolyte Competing reaction pathways Electric field effect Local reaction microenvironment Competing adsorption sites
在线阅读 下载PDF
Biomass-derived N-doped porous carbon supported single Fe atoms as low-cost and high-performance electrocatalysts for oxygen reduction reaction
16
作者 WANG Li-ping XIAO Jin +1 位作者 MAO Qiu-yun ZHONG Qi-fan 《Journal of Central South University》 2025年第4期1368-1383,共16页
Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and exp... Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost. 展开更多
关键词 oxygen reduction reaction single-atom catalyst porous carbon MICROPORE biomass
在线阅读 下载PDF
Efficient and economic H_(2)O_(2)electrosynthesis via two-electron oxygen reduction reaction enabled by dynamically reconstructed Mn(^(*)OH)-N_(3)O-C motif and coupled alcohol oxidation
17
作者 Wei Liu Rui Chen +7 位作者 Zhiyuan Sang Min Zheng Zhenxin Li Jiahuan Nie Qiao Jiang Lichang Yin Feng Hou Ji Liang 《Journal of Energy Chemistry》 2025年第9期675-684,I0018,共11页
Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal ... Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal sites in the state-of-the-art metal single-atom catalysts(M-SACs)hinders their further industrial applications,and the high potential and valueless oxygen product of the conventional anodic oxygen evolution reaction(OER)further limit the economic efficiency of this technology.To address this,a dynamically local structure reconstruction strategy is proposed to in situ transfer the active sites from unstable metal sites to the stable surrounding carbon sites for efficient and durable 2e^(-)ORR electrocatalysis.For the as-designed Mn-N_(3)O-C catalyst,by reconstructing Mn sites into Mn(^(*)OH),the Mn sites were passivated and carbon sites adjacent to the O atom were verified to be the actual active sites by in situ characterization and theoretical calculation.Consequently,Mn-N_(3)O-C exhibited>80%Faradaic efficiency and superior long-term durability over 100 h for H_(2)O_(2)electrosynthesis at~120 mA cm^(-2).In addition,coupling anodic ethylene glycol oxidation reaction(EGOR)further improves the efficiency and economic viability of the H_(2)O_(2)electrosynthesis system.This two-pronged strategy thus opens up a new opportunity for the development of stable H_(2)O_(2)electrosynthesis with low energy consumption and superior economic performance. 展开更多
关键词 Hydrogen peroxide Two-electron oxygen reduction reaction Single-atom catalysts Local structure reconstruction Ethylene glycol oxidation reaction
在线阅读 下载PDF
Sulfur poisoned PtNi/C catalysts toward two-electron oxygen reduction reaction for acidic electrosynthesis of hydrogen peroxide
18
作者 Xin Yang Lijie Zhong +7 位作者 Songxin Ye Dequan He Shuxian Yuan Huixin Li Yuting Ma Xiaocheng Mo Shiyu Gan Li Niu 《Journal of Materials Science & Technology》 2025年第1期268-275,共8页
Selective electrocatalysis of two-electron oxygen reduction reaction(2e^(-)ORR)has been recognized as a sustainable and on-site process for hydrogen peroxide(H_(2)O_(2))production.Great progress has been achieved for ... Selective electrocatalysis of two-electron oxygen reduction reaction(2e^(-)ORR)has been recognized as a sustainable and on-site process for hydrogen peroxide(H_(2)O_(2))production.Great progress has been achieved for 2e^(-)ORR in alkaline media.However,it is challenged by insufficient activity and selectiv-ity of the catalysts in acidic electrolytes.Herein,we report sulfur-poisoned PtNi/C catalysts(PtNiSx/C)that could regulate ORR from the 4e^(-)to 2e^(-)pathway.The identified PtNiS0.6/C offers high activity in terms of onset potential of∼0.69 V(vs.RHE)and∼80%selectivity.The mass activity is also compara-ble and outperforms representative Pt-based precious and transition-metal-based catalysts.In addition,it is interestingly found that the Faradaic efficiency further increased to 95%during the long-term elec-trolysis test due to Ni atom surface migration.The electrochemical production of the H_(2)O_(2)system was applied to the electro-Fenton process,which has realized the effective degradation of organic pollutants.This work offers a strategy by sulfur poisoning PtNi/C catalyst to realize Pt-based 2e^(-)ORR active catalysts to electrolysis of H_(2)O_(2)in acidic media. 展开更多
关键词 Oxygen reduction reaction Hydrogen peroxide Acidic media ELECTROCATALYSIS
原文传递
Graphene-Based Phthalocyanine-Assembled Synergistic Fe-Co-Ni Trimetallic Single-Atomic Bifunctional Electrocatalysts by Rational Design for Boosting Oxygen Reduction/Evolution Reactions
19
作者 Yujun Wu Shaobing Tang +7 位作者 Wenbo Shi Zhaoyu Ning Xingke Du Cunling Ye Zhengyu Bai Wei Shuang Qing Zhang Lin Yang 《Carbon Energy》 2025年第9期114-126,共13页
Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains... Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains a great challenge to avoid the inhomogeneous distribution and aggregation of metal single-atomic active centers in the construction of bifunctional electrocatalysts with atomically dispersed multimetallic sites because of the common calcination method.Herein,we report a novel catalyst with phthalocyanine-assembled Fe-Co-Ni single-atomic triple sites dispersed on sulfur-doped graphene using a simple ultrasonic procedure without calcination,and X-ray absorption fine structure(XAFS),aberration-corrected scanning transmission electron microscopy(AC-STEM),and other detailed characterizations are performed to demonstrate the successful synthesis.The novel catalyst shows extraordinary bifunctional ORR/OER activities with a fairly low potential difference(ΔE=0.621 V)between the OER overpotential(Ej10=315 mV at 10 m A cm^(-2))and the ORR half-wave potential(Ehalf-wave=0.924 V).Moreover,the above catalyst shows excellent ZAB performance,with an outstanding specific capacity(786 mAh g^(-1)),noteworthy maximum power density(139 mW cm^(-2)),and extraordinary rechargeability(discharged and charged at 5 mA cm^(-2) for more than 1000 h).Theoretical calculations reveal the vital importance of the preferable synergetic coupling effect between adjacent active sites in the Fe-Co-Ni trimetallic single-atomic sites during the ORR/OER processes.This study provides a new avenue for the investigation of bifunctional electrocatalysts with atomically dispersed trimetallic sites,which is intended for enhancing the ORR/OER performance in ZABs. 展开更多
关键词 bifunctional electrocatalysts Fe-Co-Ni trimetallic single-atomic sites oxygen evolution reaction oxygen reduction reaction synergetic coupling effect
在线阅读 下载PDF
Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells
20
作者 Lei Zhang Yuchen Dong +6 位作者 Lubing Li Yuchuan Shi Yan Zhang Liting Wei Chung-Li Dong Zhiqun Lin Jinzhan Su 《Nano-Micro Letters》 2025年第4期275-289,共15页
The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report a... The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dualmetal sites on N-doped carbon(denoted(FeMn-DA)-N-C)for both anion-exchange membrane fuel cells(AEMFC)and proton exchange membrane fuel cells(PEMFC).The(FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N_(4)and Mn-N_(4)sites on the carbon surface,yielded via a facile doping-adsorption-pyrolysis route.The introduction of Mn carries several advantageous attributes:increasing the number of active sites,effectively anchoring Fe due to effective electron transfer to Mn(revealed by X-ray absorption spectroscopy and density-functional theory(DFT),thus preventing the aggregation of Fe),and effectively circumventing the occurrence of Fenton reaction,thus reducing the consumption of Fe.The(FeMn-DA)-N-C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO_(4),respectively,as well as outstanding stability.As manifested by DFT calculations,the introduction of Mn affects the electronic structure of Fe,down-shifts the d-band Fe active center,accelerates the desorption of OH groups,and creates higher limiting potentials.The AEMFC and PEMFC with(FeMn-DA)-N-C as the cathode catalyst display high power densities of 1060 and 746 mW cm^(-2),respectively,underscoring their promising potential for practical applications.Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices. 展开更多
关键词 Doping-adsorption-pyrolysis Dual-atom catalysts Oxygen reduction reaction Fuel cells
在线阅读 下载PDF
上一页 1 2 201 下一页 到第
使用帮助 返回顶部