Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co...A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.展开更多
The catalyst of CUOx/Al2O3 was prepared by the dipping-sedimentation method using y-Al2O3 as a supporter. CuO and Cu2O were loaded on the surface of Al2O3, characterized by X-ray diffraction (XRD) and X-ray photoele...The catalyst of CUOx/Al2O3 was prepared by the dipping-sedimentation method using y-Al2O3 as a supporter. CuO and Cu2O were loaded on the surface of Al2O3, characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). In the presence of CuOx/Al2O3, the microwave-induced chlorine dioxide (ClO2) catalytic oxidation process was conducted for the treatment of synthetic wastewater containing 100 mg/L phenol. The factors influencing phenol removal were investigated and the results showed that microwave-induced C102-CuOx/ml203 process could effectively degrade contaminants in a short reaction time with a low oxidant dosage, extensive pH range. Under a given condition (ClO2 concentration 80 mg/L, microwave power 50 W, contact time 5 latin, catalyst dosage 50 g/L, pH 9), phenol removal percentage approached 92.24%, corresponding to 79.13% of CODcr removal. The removal of phenol by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process was a complicated non-homogeneous solid/water reaction, which fitted pseudo-first-order by kinetics. Compared with traditional ClO2 oxidation, ClO2 catalytic oxidation and microwave-induced ClO2 oxidation, microwave-induced ClO2 catalytic oxidation system could significantly enhance the degradation efficiency. It provides an effective technology for the removal of phenol wastewater.展开更多
Ceramic coatings were prepared on AZ91 D Mg alloy by micro-arc oxidation (MAO) in aluminate electrolytes, with Al2O3 nano-additive suspending at different concentrations. Effects of nano-additive concentration on th...Ceramic coatings were prepared on AZ91 D Mg alloy by micro-arc oxidation (MAO) in aluminate electrolytes, with Al2O3 nano-additive suspending at different concentrations. Effects of nano-additive concentration on the structure, phase composition, hardness and anti-corrosion property of the MAO coatings were analyzed by scanning electron microscopy, X-ray diffraction, micro-hardness test and electrochemical method, respectively. The results revealed that Al2O3 nano-particles were mostly incorporated into ceramic coating chemically, transferred into MgAl2O4, rather than being trapped mechanically during MAO process. With the increase of Al2O3 concentration, the voltage-time response, content of MgAl2O4, hardness and anti-corrosion property increased. However, when the concentration varied from 10 g/L to 15 g/L, these behaviors and properties changed only a little. This result indicated that, after the concentration of Al2O3 nano-additive reaching 10 g/L, the incorporation of Al2O3 nano-particles turned into a saturation state, due to the complex process during MAO treatment. Therefore, 10 g/L might be a proper concentration for MAO coating to incorporate Al2O3 nano-particles,展开更多
The effect of pretreatment on Pd/Al2O3 catalysts for the catalytic oxidation of o-xylene at low temperature was studied by changing the pretreatment and testing conditions. The fresh and pretreated Pd/Al2O3 catalysts ...The effect of pretreatment on Pd/Al2O3 catalysts for the catalytic oxidation of o-xylene at low temperature was studied by changing the pretreatment and testing conditions. The fresh and pretreated Pd/Al2O3 catalysts were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The results showed that the pretreatment dramatically changed the Pd/PdO ratio and then significantly affected the Pd/Al2O3 activity; while the pretreatment had not much influence on Pd particle size. The Pd/Al2O3 pre-reduced at 300~C/400~C, which has fully reduced Pd species, showed the highest activity; while the fresh Pd/Al2O3, which has fully oxidized Pd species, presented the worst performance, indicating the Pd chemical state plays an important role in the catalytic activity for the o-xylene oxidation. It is concluded that metallic Pd is the active species on the Pd/Al2O3 catalyst for the catalytic oxidation of o-xylene at low temperature.展开更多
Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process...Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess.展开更多
Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperatur...Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperature range of 600 to 850℃. XRD, H2-TPR and in situ Raman techniques was used to characterize the catalyst. Two types of ruthenium species, i.e. the ruthenium species weakly interacted with Al2O3 and that strongly interacted with the support, were identified by H2-TPR experiment. These species are responsible for two types of oscillation profiles observed during the reaction. The oscillations were the result of these ruthenium species switching cyclically between the oxidized state and the reduced state under the reaction condition. These cyclic transformations, in turn, were the result of temperature variations caused by the varying levels of the strongly exothermic CH4 combustion and the highly endothermic CH4 reforming (with H2O and CO2) reactions (or the less exothermic direct partial oxidation of methane to CO and H2), which were favored by the oxidized and the metallic sites, respectively. The major pathway of synthesis gas formation over the catalyst was via the combustion-reforming mechanism.展开更多
A series of Na-doped 1 wt% Pd/Al2O3 catalysts with different Na loadings were prepared by wet impregnation and tested for the catalytic oxidation of benzene. Suitable addition of Na had a remarkable promotion effect o...A series of Na-doped 1 wt% Pd/Al2O3 catalysts with different Na loadings were prepared by wet impregnation and tested for the catalytic oxidation of benzene. Suitable addition of Na had a remarkable promotion effect on water resistance and enhancement of low temperature activity of Pd/Al2O3 catalysts. The optimal mole ratio between Na and Pd was 1:1. The properties of the prepared catalysts were characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (O2-TPD), and in situ DRIFTS. Results indicated that the addition of Na not only decreased the content of adsorbed water species but also increased the amount of liable surface oxygen species, which are likely the key factors for the excellent water resistance of the catalyst. Na addition also improved the mobility of the lattice oxygen species, which was favorable for catalytic activity. Moreover, the well-dispersed negatively charged Pd particles and suitable redox properties derived from Na addition also contributed to the improved performance and water resistance of the Na1Pd1/Al2O3 catalyst. In situ DRIFTS results revealed that benzene was oxidized to maleate and acetate species via intermediate o-benzoquinone species, which finally turned into harmless CO2 and H2O.展开更多
Test alloys ZG40Cr24 with alloying of 3 wt% aluminium were cast by intermediate frequency induction furnace. The oxidation resistance of test alloys at 1 000 ℃ for 500 hours was examined according to oxidation weight...Test alloys ZG40Cr24 with alloying of 3 wt% aluminium were cast by intermediate frequency induction furnace. The oxidation resistance of test alloys at 1 000 ℃ for 500 hours was examined according to oxidation weight gain method. The scale morphology and composition were studied using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. By energy dispersive spectroscopy (EDS) studies, a kind of composite oxide scale compounded highly by Cr2O3, Al2O3 and spinel MCr2O4 in molecule scale came into being at high temperature. With flat and compact structure, fine and even grains, such composite scale granted complete oxidation resistance to alloy ZG40Cr24. The oxidation resistance mechanism was studied deeply in electrochemistry corrosion. The P+N semiconductor composite scale composed plenty of inner PN junctions, of which the unilateral conductive and the out-of-order arrangement endowed itself insulating in all directions. The positive and negative charges in scale could not move, and the mobile number and transferring rate of them both dropped enormously, as a result, the oxidation rate of the matrix metal was cut down greatly. So the composite scale presented excellent oxidation resistance.展开更多
In this study,the thermal stability of a Fe2 O3 catalyst for mercury oxidation was significantly improved by doping with Al2 O3.After 1 hr,the catalyst doped with 10 wt.%Al2 O3 still exhibited a mercury conversion eff...In this study,the thermal stability of a Fe2 O3 catalyst for mercury oxidation was significantly improved by doping with Al2 O3.After 1 hr,the catalyst doped with 10 wt.%Al2 O3 still exhibited a mercury conversion efficiency of 70.9%,while the undoped sample even lost its catalytic activity.Doping with Al2 O3 retarded the collapse of the catalyst mesoporous structure during high-temperature calcination,and the doped samples maintained a higher specific surface area,smaller pore size,and narrower pore size distribution.Transmission electron microscope images revealed that after calcination at 350℃,the average size of the catalyst grains in Fe2 O3 was 23.4 nm;however,the corresponding values for 1%Al2 O3/Fe2 O3,3%Al2 O3/Fe2 O3,and 10%Al2 O3/Fe2 O3 were only 13.3,7.1,and 4.7 nm,respectively.Results obtained from X-ray diffraction and thermogravimetry coupled with differential scanning calorimetry confirmed that doping with Al2 O3 also retards the crystallization of the catalysts at high temperature,constraining catalyst grains to a smaller size.展开更多
Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelect...Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.展开更多
In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative...In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode.The nanoparticles of MoS2 were found to have a zeta potential of-25 mV,which prevents suspension in the solution.Thus,to produce an Al2O3/MoS2 nanocomposite,one has to use the microparticles of MoS2.The X-ray diffraction analyses showed that the produced coatings containedα-Al2O3,γ-Al2O3,and MoS2,and that the size of MoS2 particles can be reduced to 30 nm.It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite.Using the results,it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.展开更多
MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was ev...MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst.展开更多
The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal ...The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.展开更多
The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with t...The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with the inhibition of carbon dioxide. The parameters of the kinetics model were estimated by the method of orthogonal design. The heats of adsorption of benzene, oxygen and carbon dioxide were determined by the method of gas-adsorption chromatography. The details of oscillations of complete oxidation of benzene were investigated.展开更多
We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. T...We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. The GeOx interfacial layer is formed in oxidation reaction by oxygen passing through the Al2O3 OBL, in which theAl2O3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeOx interfacial layer would dramatically decrease as the thickness of Al2O3 OBL increases, which is beneficial to achieving an ultrathin GeOx interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeOx interfacial layer has little influence on the passivation effect of the Al2O3/Ge interface. Ge (100) p-channel metal- oxide-semiconductor field-effect transistors (pMOSFETs) using the Al2O3/GeOx/Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (Ionloft) ratio of above 1 104, a subthreshold slope of - 120 mV/dec, and a peak hole mobility of 265 cm2/V.s are achieved.展开更多
Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1...Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1400℃.It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1400℃is as follows:P=F(-2.75×10^-4A+2.13×10^-3)lnt.The nonsteady diffusion kinetic equation of O2 at 1400℃inside the composites is as follows:J=De lnt.Acceleration of the total diffusional?flux of oxygen inside the composites at 1400℃is in inverse proportion to the oxidation time.The nonsteady state effective diffusion coefficient De of O2(g)inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium.The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al.The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel.HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa,HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel.Its service life is two times as many as that of MgO-CaO brick.展开更多
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金financially supported by the National Natural Science Foundation of China(21173195)~~
文摘A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
基金Project supported by the National Nature Science Foundation of China(No.50678045).
文摘The catalyst of CUOx/Al2O3 was prepared by the dipping-sedimentation method using y-Al2O3 as a supporter. CuO and Cu2O were loaded on the surface of Al2O3, characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). In the presence of CuOx/Al2O3, the microwave-induced chlorine dioxide (ClO2) catalytic oxidation process was conducted for the treatment of synthetic wastewater containing 100 mg/L phenol. The factors influencing phenol removal were investigated and the results showed that microwave-induced C102-CuOx/ml203 process could effectively degrade contaminants in a short reaction time with a low oxidant dosage, extensive pH range. Under a given condition (ClO2 concentration 80 mg/L, microwave power 50 W, contact time 5 latin, catalyst dosage 50 g/L, pH 9), phenol removal percentage approached 92.24%, corresponding to 79.13% of CODcr removal. The removal of phenol by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process was a complicated non-homogeneous solid/water reaction, which fitted pseudo-first-order by kinetics. Compared with traditional ClO2 oxidation, ClO2 catalytic oxidation and microwave-induced ClO2 oxidation, microwave-induced ClO2 catalytic oxidation system could significantly enhance the degradation efficiency. It provides an effective technology for the removal of phenol wastewater.
文摘Ceramic coatings were prepared on AZ91 D Mg alloy by micro-arc oxidation (MAO) in aluminate electrolytes, with Al2O3 nano-additive suspending at different concentrations. Effects of nano-additive concentration on the structure, phase composition, hardness and anti-corrosion property of the MAO coatings were analyzed by scanning electron microscopy, X-ray diffraction, micro-hardness test and electrochemical method, respectively. The results revealed that Al2O3 nano-particles were mostly incorporated into ceramic coating chemically, transferred into MgAl2O4, rather than being trapped mechanically during MAO process. With the increase of Al2O3 concentration, the voltage-time response, content of MgAl2O4, hardness and anti-corrosion property increased. However, when the concentration varied from 10 g/L to 15 g/L, these behaviors and properties changed only a little. This result indicated that, after the concentration of Al2O3 nano-additive reaching 10 g/L, the incorporation of Al2O3 nano-particles turned into a saturation state, due to the complex process during MAO treatment. Therefore, 10 g/L might be a proper concentration for MAO coating to incorporate Al2O3 nano-particles,
基金supported by the Ministry of Science and Technology of China (No. 2012AA062702,2010AA64905)the National Natural Science Foundation of China (No. 21077117)
文摘The effect of pretreatment on Pd/Al2O3 catalysts for the catalytic oxidation of o-xylene at low temperature was studied by changing the pretreatment and testing conditions. The fresh and pretreated Pd/Al2O3 catalysts were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The results showed that the pretreatment dramatically changed the Pd/PdO ratio and then significantly affected the Pd/Al2O3 activity; while the pretreatment had not much influence on Pd particle size. The Pd/Al2O3 pre-reduced at 300~C/400~C, which has fully reduced Pd species, showed the highest activity; while the fresh Pd/Al2O3, which has fully oxidized Pd species, presented the worst performance, indicating the Pd chemical state plays an important role in the catalytic activity for the o-xylene oxidation. It is concluded that metallic Pd is the active species on the Pd/Al2O3 catalyst for the catalytic oxidation of o-xylene at low temperature.
文摘Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess.
基金supported by the Ministry of Science and Technology of China (2005CB221401)the National Natural Science Foundation of China(20873111)the Key Science & Technology Specific Projects of Fujian Province (2009HZ10102)
文摘Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperature range of 600 to 850℃. XRD, H2-TPR and in situ Raman techniques was used to characterize the catalyst. Two types of ruthenium species, i.e. the ruthenium species weakly interacted with Al2O3 and that strongly interacted with the support, were identified by H2-TPR experiment. These species are responsible for two types of oscillation profiles observed during the reaction. The oscillations were the result of these ruthenium species switching cyclically between the oxidized state and the reduced state under the reaction condition. These cyclic transformations, in turn, were the result of temperature variations caused by the varying levels of the strongly exothermic CH4 combustion and the highly endothermic CH4 reforming (with H2O and CO2) reactions (or the less exothermic direct partial oxidation of methane to CO and H2), which were favored by the oxidized and the metallic sites, respectively. The major pathway of synthesis gas formation over the catalyst was via the combustion-reforming mechanism.
基金supported by the National Natural Science Foundation of China (No. 51608504)Youth Innovation Promotion AssociationChinese Academy of Sciences(No. 2017064)
文摘A series of Na-doped 1 wt% Pd/Al2O3 catalysts with different Na loadings were prepared by wet impregnation and tested for the catalytic oxidation of benzene. Suitable addition of Na had a remarkable promotion effect on water resistance and enhancement of low temperature activity of Pd/Al2O3 catalysts. The optimal mole ratio between Na and Pd was 1:1. The properties of the prepared catalysts were characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (O2-TPD), and in situ DRIFTS. Results indicated that the addition of Na not only decreased the content of adsorbed water species but also increased the amount of liable surface oxygen species, which are likely the key factors for the excellent water resistance of the catalyst. Na addition also improved the mobility of the lattice oxygen species, which was favorable for catalytic activity. Moreover, the well-dispersed negatively charged Pd particles and suitable redox properties derived from Na addition also contributed to the improved performance and water resistance of the Na1Pd1/Al2O3 catalyst. In situ DRIFTS results revealed that benzene was oxidized to maleate and acetate species via intermediate o-benzoquinone species, which finally turned into harmless CO2 and H2O.
文摘Test alloys ZG40Cr24 with alloying of 3 wt% aluminium were cast by intermediate frequency induction furnace. The oxidation resistance of test alloys at 1 000 ℃ for 500 hours was examined according to oxidation weight gain method. The scale morphology and composition were studied using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. By energy dispersive spectroscopy (EDS) studies, a kind of composite oxide scale compounded highly by Cr2O3, Al2O3 and spinel MCr2O4 in molecule scale came into being at high temperature. With flat and compact structure, fine and even grains, such composite scale granted complete oxidation resistance to alloy ZG40Cr24. The oxidation resistance mechanism was studied deeply in electrochemistry corrosion. The P+N semiconductor composite scale composed plenty of inner PN junctions, of which the unilateral conductive and the out-of-order arrangement endowed itself insulating in all directions. The positive and negative charges in scale could not move, and the mobile number and transferring rate of them both dropped enormously, as a result, the oxidation rate of the matrix metal was cut down greatly. So the composite scale presented excellent oxidation resistance.
基金supported by the National Key Research and Development Program of China(No.2017YFC0210501)National Natural Science Foundation of China(No.21607009)National Engineering Laboratory for Flue Gas Pollutants Control Technology and Equipment(No.NEL-KF-201902)
文摘In this study,the thermal stability of a Fe2 O3 catalyst for mercury oxidation was significantly improved by doping with Al2 O3.After 1 hr,the catalyst doped with 10 wt.%Al2 O3 still exhibited a mercury conversion efficiency of 70.9%,while the undoped sample even lost its catalytic activity.Doping with Al2 O3 retarded the collapse of the catalyst mesoporous structure during high-temperature calcination,and the doped samples maintained a higher specific surface area,smaller pore size,and narrower pore size distribution.Transmission electron microscope images revealed that after calcination at 350℃,the average size of the catalyst grains in Fe2 O3 was 23.4 nm;however,the corresponding values for 1%Al2 O3/Fe2 O3,3%Al2 O3/Fe2 O3,and 10%Al2 O3/Fe2 O3 were only 13.3,7.1,and 4.7 nm,respectively.Results obtained from X-ray diffraction and thermogravimetry coupled with differential scanning calorimetry confirmed that doping with Al2 O3 also retards the crystallization of the catalysts at high temperature,constraining catalyst grains to a smaller size.
基金supported by the National Program for Key Basic Research Projects (973 Program) of China (Grant No. 2011CBA00607)the National Natural Science Foundation of China (Grant Nos. 61106089 and 51102048)+2 种基金the National Science and Technology Major Projects (Grant No. 2009ZX02035)the State Key Laboratory of ASIC and System Project (Grant No. 11MS017)the Open Funds of State Key Laboratory of ASIC and System at Fudan University (Grant No. 10KF001)
文摘Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.
文摘In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode.The nanoparticles of MoS2 were found to have a zeta potential of-25 mV,which prevents suspension in the solution.Thus,to produce an Al2O3/MoS2 nanocomposite,one has to use the microparticles of MoS2.The X-ray diffraction analyses showed that the produced coatings containedα-Al2O3,γ-Al2O3,and MoS2,and that the size of MoS2 particles can be reduced to 30 nm.It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite.Using the results,it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.
文摘MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst.
文摘The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.
基金Supported by the National Sciences Fundation of China.
文摘The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with the inhibition of carbon dioxide. The parameters of the kinetics model were estimated by the method of orthogonal design. The heats of adsorption of benzene, oxygen and carbon dioxide were determined by the method of gas-adsorption chromatography. The details of oscillations of complete oxidation of benzene were investigated.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00605 and 2011CBA00607)the National Natural Science Foundation of China(Grant No.61204103)the National Science & Technology Major Project of China(Grant No.2011ZX02708-003)
文摘We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. The GeOx interfacial layer is formed in oxidation reaction by oxygen passing through the Al2O3 OBL, in which theAl2O3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeOx interfacial layer would dramatically decrease as the thickness of Al2O3 OBL increases, which is beneficial to achieving an ultrathin GeOx interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeOx interfacial layer has little influence on the passivation effect of the Al2O3/Ge interface. Ge (100) p-channel metal- oxide-semiconductor field-effect transistors (pMOSFETs) using the Al2O3/GeOx/Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (Ionloft) ratio of above 1 104, a subthreshold slope of - 120 mV/dec, and a peak hole mobility of 265 cm2/V.s are achieved.
基金Funded by the National Torch Plan of China(No.2005EB031110)the National Scientific and Technique Program of Ninth-five Year Plan(96-22-01-19)。
文摘Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1400℃.It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1400℃is as follows:P=F(-2.75×10^-4A+2.13×10^-3)lnt.The nonsteady diffusion kinetic equation of O2 at 1400℃inside the composites is as follows:J=De lnt.Acceleration of the total diffusional?flux of oxygen inside the composites at 1400℃is in inverse proportion to the oxidation time.The nonsteady state effective diffusion coefficient De of O2(g)inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium.The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al.The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel.HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa,HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel.Its service life is two times as many as that of MgO-CaO brick.