The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China.The resulted tectonic belts are neither products of the third stage of crustal evolution,as proposed by Chen Guod...The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China.The resulted tectonic belts are neither products of the third stage of crustal evolution,as proposed by Chen Guoda,nor intra-continental(or intraplate)orogenic belts generated by intraplate dynamics,as argued by some scholars-rather,they are superposed orogenic belts formed on the pre-existing continental crust in eastern China due to Mesozoic Paleo-Pacific dynamic system.In the past,these orogenic belts were called the marginal Pacific epicontinental activation belts of eastern China.In the Mesozoic,under the effect of Paleo-Pacific dynamic system,the East Asia margin orogenic system formed along Northeast Russia-Sikhote Alin(Russia)-Japan-Ryukyu-Taiwan(China)-Palawan(Philippines)regions,while simultaneously the Mesozoic superposed orogenic system formed in the pre-existing continental crust in eastern China adjacent to the East Asia continental margin.The two orogenic systems,both driven by Mesozoic Paleo-Pacific dynamic system,developed synchronously to form the giant Mesozoic orogenic system in the Pacific tectonic domain in eastern Asia,radically changing the pre-Indosian tectonic framework of the area.展开更多
Objective Rapakivi granites,characterized by rapakivi texture,Atype granite feature and an anorogenic setting,commonly occur in the Proterozoic of the Northern Hemisphere(Fig.la).Recently,more and more Phanerozoic r...Objective Rapakivi granites,characterized by rapakivi texture,Atype granite feature and an anorogenic setting,commonly occur in the Proterozoic of the Northern Hemisphere(Fig.la).Recently,more and more Phanerozoic rapakivi granite suites have been identified and some even occur in orogenic belts.Significantly,three-stage,Proterozoic.展开更多
We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics, trench geometry, an...We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics, trench geometry, and mechanisms for plateau accretion and continental growth. Transient instabilities of the convergent margin are produced, resulting in: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes fiat subduction above the plume, resulting in a "bowed" shaped subducting slab. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau. The plateau shortens and some plateau material subducts. The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin. In the plateau ~ plume model, plateau accretion causes rapid trench advance. Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate. The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau, effectively embedding the plateau into the overriding plate. A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the over- riding plate through the window. In all of the models, the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen (Altiads), which are characterised by accreted ophiolite complexes with diverse geochemical affinities, and a protracted evolution of accretion of exotic terranes includinu oceanic Dlateau and terranes with nlume origins.展开更多
Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fl...Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fluids are now negated in terms of a global mineral system model.Plausible models involve metamorphic fluids,but the fluid source has been equivocal.Crustal metamorphic-fluid models are most widely-accepted but there are serious problems for Archean deposits,and numerous Chinese provinces,including Jiaodong,where the only feasible fluid source is sub-crustal.If all orogenic gold deposits define a coherent mineral system,there are only two realistic sources of fluid and gold,based on their syn-mineralization geodynamic settings.These are from devolatilization of a subducted oceanic slab with its overlying gold-bearing sulfide-rich sedimentary package,or release from mantle lithosphere that was metasomatized and fertilized during a subduction event,particularly adjacent to craton margins.In this model,CO_2 is generated during decarbonation and S and ore-related elements released from transformation of pyrite to pyrrhotite at about 500 ℃.This orogenic gold mineral system can be applied to conceptual exploration by first identifying the required settings at geodynamic to deposit scales.Within these settings,it is then possible to define the critical gold mineralization processes in the system:fertility,architecture,and preservation.The geological parameters that define these processes,and the geological,geophysical and geochemical proxies and responses for these critical parameters can then be identified.At the geodynamic to province scales,critical processes include a tectonic thermal engine and deep,effective,fluid plumbing system driven by seismic swarms up lithosphere-scale faults in an oblique-slip regime during uplift late in the orogenic cycle of a convergent margin.At the district to deposit scale,the important processes are fluid focussing into regions of complex structural geometry adjacent to crustal-scale plumbing systems,with gold deposition in trap sites involving complex conjugations of competent and/or reactive rock sequences and structural or lithological fluid caps.Critical indirect responses to defined parameters change from those generated by geophysics to those generated by geochemistry with reduction in scale of the mineral system-driven conceptual exploration.展开更多
The gold deposits in the Youjiang basin,totaling>25 Moz gold,have traditionally been thought to be of Carlin-type,particularly those with extensional structural geometries in the northern basin dominated by platfor...The gold deposits in the Youjiang basin,totaling>25 Moz gold,have traditionally been thought to be of Carlin-type,particularly those with extensional structural geometries in the northern basin dominated by platform sedimentary sequences.However,the structural geometries,mineralization styles and alteration types for the Jinya,Gaolong and Nakuang gold deposits in the south-central part of the basin are remarkably similar to those of unequivocal orogenic gold deposits.Structural studies show that gold mineralization in the three gold deposits was controlled by tight“locked-up”anticlines with NW−SE-to E−W-trending and/or concomitant thrusts and/or shear zones,which resulted from NE−SW-to N–S-trending compression or transpression following the Early Triassic closure of the Paleo-Tethyan Ocean.Alteration zones in these deposits are dominated by silicification(quartz),sericitization,sulfidation and carbonation.Zoned pyrites in these deposits comprise Au-poor cores and invisible Au-bearing rims with minor external free gold.Euhedral to subhedral auriferous arsenopyrites also contribute to the gold budget.These features indicate that the three gold deposits are sediment-hosted orogenic gold deposits that contrast markedly with the Carlin-type gold deposits in the northern part of the Youjiang basin in terms of structural geometry and timing,mineralization style and nature of associated alteration.Although additional reliable ages using robust methodologies are still required,the older isotopic ages of the gold deposits in the south-central Youjiang basin are also consistent with earlier formation during transpression that predated extension during orogenic collapse,the period of formation of the Carlin-type gold deposits in the northern Youjiang basin.展开更多
Large-scale magmatism affected the Tongbai-Dabie orogenic belt during post-collisional lateral tectonic extension in the Cretaceous, which was suggested to account for the widespread deformation and migmatization in t...Large-scale magmatism affected the Tongbai-Dabie orogenic belt during post-collisional lateral tectonic extension in the Cretaceous, which was suggested to account for the widespread deformation and migmatization in the Tongbai-Dabie complexes. However, it cannot explain the most deformations in the shear zones. The northwest-southeast shear zones are developed around or wrapped the Tongbai-Dabie complexes. They play an important role for the interpretation of the tectonic evolution of the Tongbai-Dabie orogenic belt. By a systematically observation and description of the geometry and kinematics of these shear zones, we found that the shear zones to the north dip NE and have a uniform sinistral shear sense, the shear zone to the south dips SW and has a uniform dextral shear sense, and the shear zones at the core are sub-horizontal and have a uniform top-to-NW sense of shear. Combining with the comparison of previous and our geochronological studies, we interpret these associations as indicating that these shear zones were originally a single, more flat-lying and sub- horizontal shear zone with a uniform top-to-NW shear sense before the folding-doming of the Tongbai- Dabie complexes and suggest that the Tongbai-Dabie orogenic belt experienced a uniform top-to-NW orogen-paraUel extension in the ductile lithosphere before the widespread magmatism in the Cretaceous.展开更多
After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. F...After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. From Early Paleozoic to Mesozoic, Tethys Ocean was subducted toward Pan-Cathaysian block group, which results in backarc expansion, arc-land collision and forearc accretion. When the backarc basin expands and reaches the small oceanic basin, ophiolite melange will be generated. As accretion had already occurred in the south of the continental margin in the earlier stage, the succeeding backarc expansion and the frontal arc position were migrated toward south correspondingly. Therefore, multiple ophiolite belts and magmatic rock belts occurred, and show a trend of decreasing age from north toward south. As the continental margin was split and migrated toward south and reached a high latitude position, i.e., with the shortening and subduction of oceanic crust, the sedimentary bodies at high latitude was accreted continuously toward low latitude area together with the formation of oceanic island, mixing of cold-type and warm-type organism was generated. Moreover,blocks split and separated from Pan-Cathaysian or Gondwana continental group cannot traverse the oceanic median ridge and joins with another continental block. As a result, the Kunlun belt on the SW margin of the Pan-Cathaysian land was resulted from the multi-arc orogenesis such as the backarc seabed expansion, arc-arc collision, arc-land collision oceanic bed, and the continuous southward accretion process.展开更多
Geologically representative feature engineering is a crucial component in geoscientific applications of machine learning.Many commonly applied feature engineering techniques used to produce input variables for machine...Geologically representative feature engineering is a crucial component in geoscientific applications of machine learning.Many commonly applied feature engineering techniques used to produce input variables for machine learning apply geological knowledge to generic data science techniques,which can lead to ambiguity,geological oversimplification,and/or compounding subjective bias.Workflows that utilize minimally processed input variables attempt to overcome these issues,but often lead to convoluted and uninterpretable results.To address these challenges,new and enhanced feature engineering methods were developed by combining geological knowledge,understanding of data limitations,and a variety of data science techniques.These include non-Euclidean fluid pre-deformation path distance,rheological and chemical contrast,geologically constrained interpolation of characteristic host rock geochemistry,interpolation of mobile element gain/loss,assemblages,magnetic intensity,structural complexity,host rock physical properties.These methods were applied to compiled open-source and new field observations from Archean greenstone terranes in the Abitibi and western Wabigoon sub-provinces of the Superior Province near Timmins and Dryden,Ontario,respectively.Resulting feature maps represent conceptually significant components in magmatic,volcanogenic,and orogenic mineral systems.A comparison of ranked feature importance from random forests to conceptual mineral system models show that the feature maps adequately represent system components,with a few exceptions attributed to biased training data or limited constraint data.The study also highlights the shared importance of several highly ranked features for the three mineral systems,indicating that spatially related mineral systems exploit the same features when available.Comparing feature importance when classifying orogenic Au mineralization in Timmins and Dryden provides insights into the possible cause of contrasting endowment being related to fluid source.The study demonstrates that integrative studies leveraging multidisciplinary data and methodology have the potential to advance geological understanding,maximize data utility,and generate robust exploration targets.展开更多
Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- ra...Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- range coupling process and landscape evolution of orogenic belt and its adjacent basin, but also become the foundation in exploring how orogenesis controls landform,climate,resources,energy and environment etc.In the light of geodynamic mechanism,three main types of basin- range system may be classified,namely,stretch,compression and strike- slip.In combination with their geotectonic settings and plate movement phases, a comprehensive classification scheme may be educed for structural styles of basin- range system.Natural disasters and geo- ecological environment in the Yangtze Valley have been restricted and impressed by crustal movement and Qinling- Dabie etc.orogenesis since the Mesozoic and Cenozoic.In terms of collocating relation and contacting basin prototype and orogenic belt around the basin for cause of formation, typical structural styles of basin- range system on the central orogenic chain within the Yangtze Valley consist of coupling Tongbo- Dabie orogenic belt and Jianghan- Dongtin fault basin on the northern margin of the central Yangtze landmass, and coupling Qinling- Daba mountain margin thrust- faulted orogenic belt and Sichuan foreland basin on the northern margin of upper- Yangtze landmass.The paper analyzes evolutionary features of two typical structural styles of basin- range system during syn- orogenic, late- orogenic and post- orogenic stages,and probes into their dynamic mechanism.It is emphasized that,in different stages of basin- range system of different properties and basin- mountain transformation process,different structural styles may be formed;and different associations of structural styles can form different types of natural disasters complex and eco- environment systems.展开更多
As the structural body related to temporal-spatial evolution and tectonic dynamic system, the orogenic belt and basin are not only dependent on each other in space but also closely related with each other in terms of ...As the structural body related to temporal-spatial evolution and tectonic dynamic system, the orogenic belt and basin are not only dependent on each other in space but also closely related with each other in terms of infrastructure, matter transference and dynamic mechanisms. By using apatite fission-track method, the authors firstly analyze the uplift and denudation ratios of the Qinling-Dabie orogenic belt, and by using tectonically deformed combination analysis and tectonic-thermal simulation the main geological occurrences are also illustrated. It is found that there must have had multi-phase differential uplift and denudation phenomena in the Qinling-Dabie orogenic belt during the Mesozoic-Cenozoic. Then, the regional evolution pattern of qualitative and quantitative denudation process is obtained during the post-orogenic period. On the basis of summarizing evolution process of the basin-range system in the Qinling-Dabie orogenic belt during the Mesozoic-Cenozoic and its effects on regional environment, the influence of evolution process on geomorphologic landscapes change, water system vicissitude, eco-environment succession and drainage basin system evolution is discussed.展开更多
0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exe...0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exemplified by Central Asian Orogenic Belts(e.g.,Wang et al.,2024;Yin et al.,2024;Xiao et al.,2005)and the Tethyan tectonic domains(e.g.,Chen et al.,2024;Li et al.,2024;Tao et al.,2024a;Gehrels et al.,2011;Yin and Harrison,2000).展开更多
The ocean crust remnants of the Proto-Tethys were preserved as the Kudi ophiolites in the West Kunlun Orogenic Belt(WKOB),and its evolutionary history was mainly constructed by research on igneous or metamorphic rocks...The ocean crust remnants of the Proto-Tethys were preserved as the Kudi ophiolites in the West Kunlun Orogenic Belt(WKOB),and its evolutionary history was mainly constructed by research on igneous or metamorphic rocks in the WKOB.Sedimentary rocks in the WKOB received little attention in the past;however,they could provide important constraints on the evolution of the oceanic lithosphere.Here,a series of shales and greywackes found in the Kudi area of WKOB were studied to constrain their deposition ages and explore their significance in the evolution of the ProtoTethys oceanic crust.The U-Pb dating and europium anomaly(Eu/Eu^(*))were analyzed for detrital zircons from greywackes interlayers,while bulk rare earth elements and yttrium(REY)of the shales were measured.Detrital zircons U-Pb ages yield a maximum deposition age of 436 Ma for the greywackes and black shales,while the REY distribution patterns of the black shales are similar to those of the Tarim Ordovician Saergan shales.Accordingly,the studied WKOB black shales were deposited in the Proto-Tethys Ocean during the Late Ordovician-Early Silurian period.The maximum deposition age at 436 Ma may represent a minimum closure time of the Proto-Tethys Ocean,which is also supported by the absence of increases in Eu/Eu^(*)values during the Late Ordovician-Early Silurian.Besides,our Eu/Eu^(*)values in detrital zircons indicate diminished orogenesis during the Archean to Meso-Proterozoic,subduction-related accretion at the margins of the supercontinent Rodinia during the Neoproterozoic.展开更多
Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbo...Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbonization,carbonate dissolution and parting melting.Identifying the dominant carbon recycling mechanism responsible for carbonation of subcontinental lithospheric mantle(SCLM)remains challenging,yet it is critical for understanding the genesis of post-collisional carbonatites and associated rare earth element deposits.To address this issue,we investigate the Li isotopic systematics of typical post-collisional carbonatite-alkalic complexes from Mianning-Dechang(MD),Southeast Xizang.Our results show that the less-evolved magmas(lamprophyres)have mantle-like or slightly lowerδ^(7)Li values(0.3‰–3.6‰)with limited variability,contrasting sharply with the widerδ^(7)Li range observed in associated carbonatites and syenites.We interpret this dichotomy as reflecting distinct processes:while the variable and anomalousδ^(7)Li values in differentiated rocks(carbonatites and syenites)were caused by late-stage magmatic-hydrothermal processes(including biotite fractionation,fluid exsolution and hydrothermal alteration),the lamprophyres retain the primary Li isotopic signature of their mantle source.Together with their arc-like trace element and EM1-EM2-type Sr-Nd-Pb isotopic signatures,such mantle-like or slightly lowerδ^(7)Li values of the lamprophyres preclude carbon derivation from high-δ^(7)Li reservoirs(altered oceanic crust,serpentinites)and recycling of sedimentary carbon through metamorphic decarbonization or dissolution.Instead,these features indicate that the carbon was predominantly transported into the mantle source via partial melting of subducted carbonate-bearing sediments.This study demonstrates that Li isotopes can serve as a tracer for identifying the mechanism of carbon recycling in collision zones.展开更多
The study area is situated in the Tianshan region,specifically within the eastern segment of the North Qilian Orogenic Belt(NQLOB).The NQLOB is a critical region for understanding oceanic closure and continental colli...The study area is situated in the Tianshan region,specifically within the eastern segment of the North Qilian Orogenic Belt(NQLOB).The NQLOB is a critical region for understanding oceanic closure and continental collision processes driven by the Shangdan Ocean subduction-exhumation,which was a segment of the Proto-Tethys Ocean during the Early Paleozoic.Despite significant research,the Early Paleozoic tectonic background and subduction-related orogenic processes,particularly in the eastern NQLOB,remain subjects of debate.This study presents significant petrographic,geochemical,and geochronologic insights into the metavolcanic rocks of the Chenjiahe Group in the eastern NQLOB.Petrographic analysis reveals that these metavolcanic rocks originated in a low-grade metamorphic setting.Zircon laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U-Pb dating yielded ages ranging between 449.7-443.4 Ma,indicating Late Ordovician formation.Geochemical signatures of felsic and intermediate rocks exhibit calc-alkaline to high-K calc-alkaline similarities,characterized by high light rare earth elements(LREEs),low heavy rare earth elements(HREEs),and moderate Eu anomalies,consistent with a continental arc setting.In contrast,basaltic rocks display tholeiitic features with elevated large-ion lithophile elements(LILEs),reduced high-field-strength elements(HFSEs),and weak Eu anomalies,suggesting an extensional environment.These findings imply that the metavolcanic rocks evolved in a continental arc-back-arc extension setting connected with the northward subduction and exhumation of the Huluhe back-arc oceanic basin.This process was likely triggered by the northward subduction and closure of the Shangdan Ocean,culminating in the Late Ordovician amalgamation of the Qilian Block and the southwestern North China Block.This study provides critical insight into the tectonic development of the NQLOB and the broader Proto-Tethys Ocean dynamics at the northern periphery of the Eastern Gondwana.展开更多
A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on thi...A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on this set of intrusive rock assemblages.U-Pb dating of apatite shows that the lherzolite formed at 492±5 Ma,the granite at 473±6 Ma,and the diabase at 260±14 Ma,respectively.The lherzolites belong to a supra-subduction zone type(SSZ-type)ophiolite component above a subduction zone;the granites formed in an ocean-continent subduction setting;and the diabases represent products of partial melting of an asthenospheric mantle at shallow depth.The East Kunlun orogenic belt features the East Kunzhong and Buqingshan-Animaqing ophiolitic mélange belts,with the latter representing remnants of the Proto-Tethys Ocean.The Late Cambrian lherzolites and granites in the Longshenggeng area were magmatic products of the back-arc ocean basin and island arc formed during the northward subduction of the Proto-Tethys Ocean.Subsequently,extensive island arc magmatism occurred from the Late Permian to Middle Triassic,driven by the northward subduction of the Paleo-Tethys Ocean beneath the East Kunlun Block.The diabase may have formed during the transition from subduction to post-collisional extension.展开更多
We report new SHRIMP zircon U-Pb ages,zircon Lu-Hf isotopic and whole rock geochemical data from Permian granitoids located in the Alxa area of Inner Mongolia,China.In combination with published geochronological and g...We report new SHRIMP zircon U-Pb ages,zircon Lu-Hf isotopic and whole rock geochemical data from Permian granitoids located in the Alxa area of Inner Mongolia,China.In combination with published geochronological and geochemical data,the granitoids in the region can be divided into two age groups:ca.285 Ma and ca.269 Ma.The granitoids of the first group are mainly composed of calc-alkaline to high-K calc-alkaline,weakly peraluminous Ⅰ-type granodiorites with ε_(Hf)(t)values of-19.6 to-4.3,which demonstrates evidence of crustal reworking;the granitoids of the second group,however,mainly consist of A-type granites that are high-K calc-alkaline to shoshonite,metaluminous to weakly peraluminous,and have high 10,000×Ga/Al ratios(2.59-3.12)and ε_(Hf)(t)values ranging from-11.3 to-2.7,all of which demonstrates a mixed crust-mantle source.We interpret the granitoids of the first group to have formed during the subduction of Central Asian oceanic crust and the second group to have formed by the asthenospheric upwelling caused by the formation of slab windows during late ocean ridge subduction.展开更多
0 INTRODUCTION The Haidewula uranium deposit is located in the Haidewula volcanic basin,which hosts a suite of basic,intermediate to felsic volcanic and subvolcanic rocks,including basalt,trachyte,trachyandesite.Previ...0 INTRODUCTION The Haidewula uranium deposit is located in the Haidewula volcanic basin,which hosts a suite of basic,intermediate to felsic volcanic and subvolcanic rocks,including basalt,trachyte,trachyandesite.Previous geochronological studies of the intrusions within this volcanic basin suggest that they primarily formed during the Silurian and Triassic periods(Dai et al.,2025;Sun et al.,2024;Wang et al.,2024;Zhu et al.,2022;Lei et al.,2021).展开更多
The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically ass...The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.展开更多
To explore the high heat flow anomalies from the Dabie orogenic belt,We have set up 15 Magnetotelluric(MT)stations.The stations have an average spacing of~2 km.Firstly,the phase tensor method is used to analyze MT dat...To explore the high heat flow anomalies from the Dabie orogenic belt,We have set up 15 Magnetotelluric(MT)stations.The stations have an average spacing of~2 km.Firstly,the phase tensor method is used to analyze MT data to estimate the dimensional characteristics of the underground resistivity structure.Then,based on the results of dimensional characteristics analysis,three-dimensional(3D)inversion was performed using ModEM,and a 3D resistivity structure from the surface to a depth of 30 km was obtained.It shows:that there are extensive low resistivity anomalies in the lower crust of the northern margin of the Dabie orogenic belt,which may be partial melting or water-bearing fluid.The high heat flow anomaly in the northern margin of the Dabie orogenic belt may be due to the increase of the background heat flow value caused by the orogenic belt delamination during post-collision,the thinning of the lithosphere and the upwelling of the asthenosphere.展开更多
The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion res...The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion resulted in the transformation and disappearance of much geological record from the Qinling orogenic belt,and the tectonic evolution of this belt remains poorly constrained during the Triassic.Located in the northernmost margin of the South China Craton,the Sichuan Basin preserves the complete Triassic sedimentary succession,and can provide significant information for understanding the Triassic tectonic evolution of the Qinling orogenic belt.We present detrital zircon U-Pb dating,trace element and in situ Lu-Hf isotope data for the Middle Triassic Leikoupo Formation and the Late Triassic Xujiahe Formation samples from the eastern Sichuan Basin,South China.The detrital zircon U-Pb ages of the Leikoupo Formation show seven age clusters of 280-242,350-300,500-400,1000-800,2000-1750,2100-2000 and 2600-2400 Ma,while those of the Xujiahe Formation show five age clusters of 300-200,500-350,1050-950,2000-1750 and 2600-2400 Ma.Combined with published paleocurrent and paleogeographic data,the sediments of the Leikoupo Formation are interpreted to be sourced from the North China Craton,Yangtze Craton and North Qinling orogenic belt,and the potential main source regions of the Xujiahe Formation included the South and North Qinling orogenic belts.Provenance analysis indicates that the North Qinling orogenic belt was in inherited uplift and coeval denudation in the Middle Triassic.The proportion of the detritus formed in the South Qinling orogenic belt increases gradually from the Leikoupo to Xujiahe formations.This significant provenance change indicates that rapid tectonic uplift and extensive denudation of the South Qinling orogenic belt occurred in the early Late Triassic,which is related to the collision between the North China and South China cratons during the Triassic.展开更多
基金funded by the Regional Geological Survey Project of the China Geological Survey(DD20221646)the National Natural Science Foundation of China(42172218).
文摘The Indosinian and Yanshanian orogenic movements are both important Mesozoic orogenies in eastern China.The resulted tectonic belts are neither products of the third stage of crustal evolution,as proposed by Chen Guoda,nor intra-continental(or intraplate)orogenic belts generated by intraplate dynamics,as argued by some scholars-rather,they are superposed orogenic belts formed on the pre-existing continental crust in eastern China due to Mesozoic Paleo-Pacific dynamic system.In the past,these orogenic belts were called the marginal Pacific epicontinental activation belts of eastern China.In the Mesozoic,under the effect of Paleo-Pacific dynamic system,the East Asia margin orogenic system formed along Northeast Russia-Sikhote Alin(Russia)-Japan-Ryukyu-Taiwan(China)-Palawan(Philippines)regions,while simultaneously the Mesozoic superposed orogenic system formed in the pre-existing continental crust in eastern China adjacent to the East Asia continental margin.The two orogenic systems,both driven by Mesozoic Paleo-Pacific dynamic system,developed synchronously to form the giant Mesozoic orogenic system in the Pacific tectonic domain in eastern Asia,radically changing the pre-Indosian tectonic framework of the area.
基金supported by the National Natural Science Foundation of China(grants No.41172062, 40872054 and 40372043)the China Geological Survey(grant No.1212010811033)
文摘Objective Rapakivi granites,characterized by rapakivi texture,Atype granite feature and an anorogenic setting,commonly occur in the Proterozoic of the Northern Hemisphere(Fig.la).Recently,more and more Phanerozoic rapakivi granite suites have been identified and some even occur in orogenic belts.Significantly,three-stage,Proterozoic.
基金Monash Research Acceleration Program,which funded part of the researchsupport from the Australian Research Council's Discovery Projects funding scheme(projects Nos.DP130101946 and DP110101697)+1 种基金use of the NCI National Facility in Canberra, Australia,which is supported by the Australian Commonwealth GovernmentNSFCAREER award EAR-1054638
文摘We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics, trench geometry, and mechanisms for plateau accretion and continental growth. Transient instabilities of the convergent margin are produced, resulting in: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes fiat subduction above the plume, resulting in a "bowed" shaped subducting slab. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau. The plateau shortens and some plateau material subducts. The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin. In the plateau ~ plume model, plateau accretion causes rapid trench advance. Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate. The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau, effectively embedding the plateau into the overriding plate. A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the over- riding plate through the window. In all of the models, the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen (Altiads), which are characterised by accreted ophiolite complexes with diverse geochemical affinities, and a protracted evolution of accretion of exotic terranes includinu oceanic Dlateau and terranes with nlume origins.
基金partly funded by the National Natural Science Foundation of China(Grant Nos.41230311,41572069,41702070)the National Key Research and Development Project of China(2016YFC0600307)+2 种基金the National Key Research Program of China(Grant Nos.2016YFC0600107-4 and 2016YFC0600307)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant No.MSFGPMR201804)the 111 Project of the Ministry of Science and Technology,China(Grant No.BP0719021)。
文摘Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fluids are now negated in terms of a global mineral system model.Plausible models involve metamorphic fluids,but the fluid source has been equivocal.Crustal metamorphic-fluid models are most widely-accepted but there are serious problems for Archean deposits,and numerous Chinese provinces,including Jiaodong,where the only feasible fluid source is sub-crustal.If all orogenic gold deposits define a coherent mineral system,there are only two realistic sources of fluid and gold,based on their syn-mineralization geodynamic settings.These are from devolatilization of a subducted oceanic slab with its overlying gold-bearing sulfide-rich sedimentary package,or release from mantle lithosphere that was metasomatized and fertilized during a subduction event,particularly adjacent to craton margins.In this model,CO_2 is generated during decarbonation and S and ore-related elements released from transformation of pyrite to pyrrhotite at about 500 ℃.This orogenic gold mineral system can be applied to conceptual exploration by first identifying the required settings at geodynamic to deposit scales.Within these settings,it is then possible to define the critical gold mineralization processes in the system:fertility,architecture,and preservation.The geological parameters that define these processes,and the geological,geophysical and geochemical proxies and responses for these critical parameters can then be identified.At the geodynamic to province scales,critical processes include a tectonic thermal engine and deep,effective,fluid plumbing system driven by seismic swarms up lithosphere-scale faults in an oblique-slip regime during uplift late in the orogenic cycle of a convergent margin.At the district to deposit scale,the important processes are fluid focussing into regions of complex structural geometry adjacent to crustal-scale plumbing systems,with gold deposition in trap sites involving complex conjugations of competent and/or reactive rock sequences and structural or lithological fluid caps.Critical indirect responses to defined parameters change from those generated by geophysics to those generated by geochemistry with reduction in scale of the mineral system-driven conceptual exploration.
基金supported by the National Key Research and Development Project of China(2016YFC0600307)the National Key Basic Research Development Program(973 Program+3 种基金2015CB452606)the Chinese Post-doctoral Innovative Talent Support Program(BX20180280)the China Postdoctoral Science Foundation(2018M641428)the 111 Project of the Ministry of Science and Technology(BP0719021).
文摘The gold deposits in the Youjiang basin,totaling>25 Moz gold,have traditionally been thought to be of Carlin-type,particularly those with extensional structural geometries in the northern basin dominated by platform sedimentary sequences.However,the structural geometries,mineralization styles and alteration types for the Jinya,Gaolong and Nakuang gold deposits in the south-central part of the basin are remarkably similar to those of unequivocal orogenic gold deposits.Structural studies show that gold mineralization in the three gold deposits was controlled by tight“locked-up”anticlines with NW−SE-to E−W-trending and/or concomitant thrusts and/or shear zones,which resulted from NE−SW-to N–S-trending compression or transpression following the Early Triassic closure of the Paleo-Tethyan Ocean.Alteration zones in these deposits are dominated by silicification(quartz),sericitization,sulfidation and carbonation.Zoned pyrites in these deposits comprise Au-poor cores and invisible Au-bearing rims with minor external free gold.Euhedral to subhedral auriferous arsenopyrites also contribute to the gold budget.These features indicate that the three gold deposits are sediment-hosted orogenic gold deposits that contrast markedly with the Carlin-type gold deposits in the northern part of the Youjiang basin in terms of structural geometry and timing,mineralization style and nature of associated alteration.Although additional reliable ages using robust methodologies are still required,the older isotopic ages of the gold deposits in the south-central Youjiang basin are also consistent with earlier formation during transpression that predated extension during orogenic collapse,the period of formation of the Carlin-type gold deposits in the northern Youjiang basin.
基金funded by the National Natural Science Foundation of China(Grants.41272222 to C.Z.Song and 41472166 to S.Lin)China Geological Survey(Grants.1212011121116 to S.Lin)a China Scholarship Council scholarship to H.Liu
文摘Large-scale magmatism affected the Tongbai-Dabie orogenic belt during post-collisional lateral tectonic extension in the Cretaceous, which was suggested to account for the widespread deformation and migmatization in the Tongbai-Dabie complexes. However, it cannot explain the most deformations in the shear zones. The northwest-southeast shear zones are developed around or wrapped the Tongbai-Dabie complexes. They play an important role for the interpretation of the tectonic evolution of the Tongbai-Dabie orogenic belt. By a systematically observation and description of the geometry and kinematics of these shear zones, we found that the shear zones to the north dip NE and have a uniform sinistral shear sense, the shear zone to the south dips SW and has a uniform dextral shear sense, and the shear zones at the core are sub-horizontal and have a uniform top-to-NW sense of shear. Combining with the comparison of previous and our geochronological studies, we interpret these associations as indicating that these shear zones were originally a single, more flat-lying and sub- horizontal shear zone with a uniform top-to-NW shear sense before the folding-doming of the Tongbai- Dabie complexes and suggest that the Tongbai-Dabie orogenic belt experienced a uniform top-to-NW orogen-paraUel extension in the ductile lithosphere before the widespread magmatism in the Cretaceous.
文摘After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. From Early Paleozoic to Mesozoic, Tethys Ocean was subducted toward Pan-Cathaysian block group, which results in backarc expansion, arc-land collision and forearc accretion. When the backarc basin expands and reaches the small oceanic basin, ophiolite melange will be generated. As accretion had already occurred in the south of the continental margin in the earlier stage, the succeeding backarc expansion and the frontal arc position were migrated toward south correspondingly. Therefore, multiple ophiolite belts and magmatic rock belts occurred, and show a trend of decreasing age from north toward south. As the continental margin was split and migrated toward south and reached a high latitude position, i.e., with the shortening and subduction of oceanic crust, the sedimentary bodies at high latitude was accreted continuously toward low latitude area together with the formation of oceanic island, mixing of cold-type and warm-type organism was generated. Moreover,blocks split and separated from Pan-Cathaysian or Gondwana continental group cannot traverse the oceanic median ridge and joins with another continental block. As a result, the Kunlun belt on the SW margin of the Pan-Cathaysian land was resulted from the multi-arc orogenesis such as the backarc seabed expansion, arc-arc collision, arc-land collision oceanic bed, and the continuous southward accretion process.
文摘Geologically representative feature engineering is a crucial component in geoscientific applications of machine learning.Many commonly applied feature engineering techniques used to produce input variables for machine learning apply geological knowledge to generic data science techniques,which can lead to ambiguity,geological oversimplification,and/or compounding subjective bias.Workflows that utilize minimally processed input variables attempt to overcome these issues,but often lead to convoluted and uninterpretable results.To address these challenges,new and enhanced feature engineering methods were developed by combining geological knowledge,understanding of data limitations,and a variety of data science techniques.These include non-Euclidean fluid pre-deformation path distance,rheological and chemical contrast,geologically constrained interpolation of characteristic host rock geochemistry,interpolation of mobile element gain/loss,assemblages,magnetic intensity,structural complexity,host rock physical properties.These methods were applied to compiled open-source and new field observations from Archean greenstone terranes in the Abitibi and western Wabigoon sub-provinces of the Superior Province near Timmins and Dryden,Ontario,respectively.Resulting feature maps represent conceptually significant components in magmatic,volcanogenic,and orogenic mineral systems.A comparison of ranked feature importance from random forests to conceptual mineral system models show that the feature maps adequately represent system components,with a few exceptions attributed to biased training data or limited constraint data.The study also highlights the shared importance of several highly ranked features for the three mineral systems,indicating that spatially related mineral systems exploit the same features when available.Comparing feature importance when classifying orogenic Au mineralization in Timmins and Dryden provides insights into the possible cause of contrasting endowment being related to fluid source.The study demonstrates that integrative studies leveraging multidisciplinary data and methodology have the potential to advance geological understanding,maximize data utility,and generate robust exploration targets.
基金This paper is one of achievements of the Chinese Academy of Sciences " Knowledge Innovation Project" item(KZCX2- 113).
文摘Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- range coupling process and landscape evolution of orogenic belt and its adjacent basin, but also become the foundation in exploring how orogenesis controls landform,climate,resources,energy and environment etc.In the light of geodynamic mechanism,three main types of basin- range system may be classified,namely,stretch,compression and strike- slip.In combination with their geotectonic settings and plate movement phases, a comprehensive classification scheme may be educed for structural styles of basin- range system.Natural disasters and geo- ecological environment in the Yangtze Valley have been restricted and impressed by crustal movement and Qinling- Dabie etc.orogenesis since the Mesozoic and Cenozoic.In terms of collocating relation and contacting basin prototype and orogenic belt around the basin for cause of formation, typical structural styles of basin- range system on the central orogenic chain within the Yangtze Valley consist of coupling Tongbo- Dabie orogenic belt and Jianghan- Dongtin fault basin on the northern margin of the central Yangtze landmass, and coupling Qinling- Daba mountain margin thrust- faulted orogenic belt and Sichuan foreland basin on the northern margin of upper- Yangtze landmass.The paper analyzes evolutionary features of two typical structural styles of basin- range system during syn- orogenic, late- orogenic and post- orogenic stages,and probes into their dynamic mechanism.It is emphasized that,in different stages of basin- range system of different properties and basin- mountain transformation process,different structural styles may be formed;and different associations of structural styles can form different types of natural disasters complex and eco- environment systems.
文摘As the structural body related to temporal-spatial evolution and tectonic dynamic system, the orogenic belt and basin are not only dependent on each other in space but also closely related with each other in terms of infrastructure, matter transference and dynamic mechanisms. By using apatite fission-track method, the authors firstly analyze the uplift and denudation ratios of the Qinling-Dabie orogenic belt, and by using tectonically deformed combination analysis and tectonic-thermal simulation the main geological occurrences are also illustrated. It is found that there must have had multi-phase differential uplift and denudation phenomena in the Qinling-Dabie orogenic belt during the Mesozoic-Cenozoic. Then, the regional evolution pattern of qualitative and quantitative denudation process is obtained during the post-orogenic period. On the basis of summarizing evolution process of the basin-range system in the Qinling-Dabie orogenic belt during the Mesozoic-Cenozoic and its effects on regional environment, the influence of evolution process on geomorphologic landscapes change, water system vicissitude, eco-environment succession and drainage basin system evolution is discussed.
基金supported by the National Key Research and Development Project(No.2022YFC2903302)the Second Tibet Plateau Scientific Expedition and Research Program(STEP),(No.2019QZKK0802)+2 种基金the National Natural Science Foundation of China(No.42361144841)the Chinese Academy of Geological Sciences Basal Research Fund(No.JKYZD202402)the Scientific Research Fund Project of BGRIMM Technology Group(No.JTKY202427822)。
文摘0 INTRODUCTION Orogenic belts are commonly built by multiple-stage processes involving oceanic subduction and continental collisions that result in the generation of magma with distinct geochemical compositions,as exemplified by Central Asian Orogenic Belts(e.g.,Wang et al.,2024;Yin et al.,2024;Xiao et al.,2005)and the Tethyan tectonic domains(e.g.,Chen et al.,2024;Li et al.,2024;Tao et al.,2024a;Gehrels et al.,2011;Yin and Harrison,2000).
基金financially supported by the National Major Science and Technology Project of China(No.2016ZX05004-004)the State Scholarship Grant from the China Scholarship Council(CSC)to Yinggang Zhang。
文摘The ocean crust remnants of the Proto-Tethys were preserved as the Kudi ophiolites in the West Kunlun Orogenic Belt(WKOB),and its evolutionary history was mainly constructed by research on igneous or metamorphic rocks in the WKOB.Sedimentary rocks in the WKOB received little attention in the past;however,they could provide important constraints on the evolution of the oceanic lithosphere.Here,a series of shales and greywackes found in the Kudi area of WKOB were studied to constrain their deposition ages and explore their significance in the evolution of the ProtoTethys oceanic crust.The U-Pb dating and europium anomaly(Eu/Eu^(*))were analyzed for detrital zircons from greywackes interlayers,while bulk rare earth elements and yttrium(REY)of the shales were measured.Detrital zircons U-Pb ages yield a maximum deposition age of 436 Ma for the greywackes and black shales,while the REY distribution patterns of the black shales are similar to those of the Tarim Ordovician Saergan shales.Accordingly,the studied WKOB black shales were deposited in the Proto-Tethys Ocean during the Late Ordovician-Early Silurian period.The maximum deposition age at 436 Ma may represent a minimum closure time of the Proto-Tethys Ocean,which is also supported by the absence of increases in Eu/Eu^(*)values during the Late Ordovician-Early Silurian.Besides,our Eu/Eu^(*)values in detrital zircons indicate diminished orogenesis during the Archean to Meso-Proterozoic,subduction-related accretion at the margins of the supercontinent Rodinia during the Neoproterozoic.
基金funded by the National Natural Science Foundation of China(42263006)Open Fund from the Jiangxi Province,China(Grant No.20224ACB203011 and 2020101003)East China University of Technology(DHYC-202401 and 1410000874).
文摘Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbonization,carbonate dissolution and parting melting.Identifying the dominant carbon recycling mechanism responsible for carbonation of subcontinental lithospheric mantle(SCLM)remains challenging,yet it is critical for understanding the genesis of post-collisional carbonatites and associated rare earth element deposits.To address this issue,we investigate the Li isotopic systematics of typical post-collisional carbonatite-alkalic complexes from Mianning-Dechang(MD),Southeast Xizang.Our results show that the less-evolved magmas(lamprophyres)have mantle-like or slightly lowerδ^(7)Li values(0.3‰–3.6‰)with limited variability,contrasting sharply with the widerδ^(7)Li range observed in associated carbonatites and syenites.We interpret this dichotomy as reflecting distinct processes:while the variable and anomalousδ^(7)Li values in differentiated rocks(carbonatites and syenites)were caused by late-stage magmatic-hydrothermal processes(including biotite fractionation,fluid exsolution and hydrothermal alteration),the lamprophyres retain the primary Li isotopic signature of their mantle source.Together with their arc-like trace element and EM1-EM2-type Sr-Nd-Pb isotopic signatures,such mantle-like or slightly lowerδ^(7)Li values of the lamprophyres preclude carbon derivation from high-δ^(7)Li reservoirs(altered oceanic crust,serpentinites)and recycling of sedimentary carbon through metamorphic decarbonization or dissolution.Instead,these features indicate that the carbon was predominantly transported into the mantle source via partial melting of subducted carbonate-bearing sediments.This study demonstrates that Li isotopes can serve as a tracer for identifying the mechanism of carbon recycling in collision zones.
基金supported by the National Nature Science Foundation of China (Grant Nos. 41872235, 42172236, and 41872233)Double First-Class University Construction Special Project of Shaanxi (Grant No. 300111240014)+1 种基金the Youth Innovation Team of Shaanxi Universitiesthe Fundamental Research Funds for the Central Universities of China (Grant Nos. 300102270202, 202110710062, 300103183081, 300108231154, S202410710285, and 300102274808)
文摘The study area is situated in the Tianshan region,specifically within the eastern segment of the North Qilian Orogenic Belt(NQLOB).The NQLOB is a critical region for understanding oceanic closure and continental collision processes driven by the Shangdan Ocean subduction-exhumation,which was a segment of the Proto-Tethys Ocean during the Early Paleozoic.Despite significant research,the Early Paleozoic tectonic background and subduction-related orogenic processes,particularly in the eastern NQLOB,remain subjects of debate.This study presents significant petrographic,geochemical,and geochronologic insights into the metavolcanic rocks of the Chenjiahe Group in the eastern NQLOB.Petrographic analysis reveals that these metavolcanic rocks originated in a low-grade metamorphic setting.Zircon laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)U-Pb dating yielded ages ranging between 449.7-443.4 Ma,indicating Late Ordovician formation.Geochemical signatures of felsic and intermediate rocks exhibit calc-alkaline to high-K calc-alkaline similarities,characterized by high light rare earth elements(LREEs),low heavy rare earth elements(HREEs),and moderate Eu anomalies,consistent with a continental arc setting.In contrast,basaltic rocks display tholeiitic features with elevated large-ion lithophile elements(LILEs),reduced high-field-strength elements(HFSEs),and weak Eu anomalies,suggesting an extensional environment.These findings imply that the metavolcanic rocks evolved in a continental arc-back-arc extension setting connected with the northward subduction and exhumation of the Huluhe back-arc oceanic basin.This process was likely triggered by the northward subduction and closure of the Shangdan Ocean,culminating in the Late Ordovician amalgamation of the Qilian Block and the southwestern North China Block.This study provides critical insight into the tectonic development of the NQLOB and the broader Proto-Tethys Ocean dynamics at the northern periphery of the Eastern Gondwana.
基金supported by the Qinghai Provincial Special Fund for Geological Exploration-Deep Mineral Exploration Breakthrough Demonstration Project in Key Ore Concentration Areas of Qinghai Province(No.2023085029ky004)New Round of National Strategic Action for Mineral Exploration Breakthrough-Research and Demonstration of Air-Ground Collaborative Efficient Technologies for Copper-Nickel Sulfide Deposits in the East Kunlun Plateau Desert Region(No.ZKKJ202416)+1 种基金National Key R&D Program of China-Novel Geochemical Exploration Technologies for Desert Gobi and Alpine Grassland Shallow Overburden Terrains(No.2024ZD1002403)Kunlun Talent Program of Qinghai Province jointly support。
文摘A set of ultramafic-mafic-felsic rock assemblages was discovered in the Long-shenggeng area of the eastern part of the East Kunlun orogenic belt.Petrography,chronology and whole-rock geochemistry were conducted on this set of intrusive rock assemblages.U-Pb dating of apatite shows that the lherzolite formed at 492±5 Ma,the granite at 473±6 Ma,and the diabase at 260±14 Ma,respectively.The lherzolites belong to a supra-subduction zone type(SSZ-type)ophiolite component above a subduction zone;the granites formed in an ocean-continent subduction setting;and the diabases represent products of partial melting of an asthenospheric mantle at shallow depth.The East Kunlun orogenic belt features the East Kunzhong and Buqingshan-Animaqing ophiolitic mélange belts,with the latter representing remnants of the Proto-Tethys Ocean.The Late Cambrian lherzolites and granites in the Longshenggeng area were magmatic products of the back-arc ocean basin and island arc formed during the northward subduction of the Proto-Tethys Ocean.Subsequently,extensive island arc magmatism occurred from the Late Permian to Middle Triassic,driven by the northward subduction of the Paleo-Tethys Ocean beneath the East Kunlun Block.The diabase may have formed during the transition from subduction to post-collisional extension.
基金financially supported by the Geological Survey of China(Grant Nos.DD20240075,and DD20243516)the National Natural Science Foundation of China(Grant No.41872209)Basic Scientific Research Fund of the Institute of Geology,Chinese Academy of Geological Sciences(Grant No.J2314)。
文摘We report new SHRIMP zircon U-Pb ages,zircon Lu-Hf isotopic and whole rock geochemical data from Permian granitoids located in the Alxa area of Inner Mongolia,China.In combination with published geochronological and geochemical data,the granitoids in the region can be divided into two age groups:ca.285 Ma and ca.269 Ma.The granitoids of the first group are mainly composed of calc-alkaline to high-K calc-alkaline,weakly peraluminous Ⅰ-type granodiorites with ε_(Hf)(t)values of-19.6 to-4.3,which demonstrates evidence of crustal reworking;the granitoids of the second group,however,mainly consist of A-type granites that are high-K calc-alkaline to shoshonite,metaluminous to weakly peraluminous,and have high 10,000×Ga/Al ratios(2.59-3.12)and ε_(Hf)(t)values ranging from-11.3 to-2.7,all of which demonstrates a mixed crust-mantle source.We interpret the granitoids of the first group to have formed during the subduction of Central Asian oceanic crust and the second group to have formed by the asthenospheric upwelling caused by the formation of slab windows during late ocean ridge subduction.
基金financially supported by projects from the National Natural Science Foundation of China(No.42321001)the Qinghai Provincial Department of Science and Technology Key R&D Project(No.2025-SF-141)+1 种基金the Qinghai“Kunlun Talent”Program(Qing RC Talent Zi(2024)No.1)the Academician Zhao Pengda Innovation Center in Qinghai Geological Bureau of Nuclear Industry。
文摘0 INTRODUCTION The Haidewula uranium deposit is located in the Haidewula volcanic basin,which hosts a suite of basic,intermediate to felsic volcanic and subvolcanic rocks,including basalt,trachyte,trachyandesite.Previous geochronological studies of the intrusions within this volcanic basin suggest that they primarily formed during the Silurian and Triassic periods(Dai et al.,2025;Sun et al.,2024;Wang et al.,2024;Zhu et al.,2022;Lei et al.,2021).
基金funded by the National Natural Science Foundation of China(42125203,42330809)the 111 project of the Ministry of Science and Technology(BP0719021).
文摘The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.
基金supported by the National Key Research and Development Program of China(grant no.2023YFF0615101).
文摘To explore the high heat flow anomalies from the Dabie orogenic belt,We have set up 15 Magnetotelluric(MT)stations.The stations have an average spacing of~2 km.Firstly,the phase tensor method is used to analyze MT data to estimate the dimensional characteristics of the underground resistivity structure.Then,based on the results of dimensional characteristics analysis,three-dimensional(3D)inversion was performed using ModEM,and a 3D resistivity structure from the surface to a depth of 30 km was obtained.It shows:that there are extensive low resistivity anomalies in the lower crust of the northern margin of the Dabie orogenic belt,which may be partial melting or water-bearing fluid.The high heat flow anomaly in the northern margin of the Dabie orogenic belt may be due to the increase of the background heat flow value caused by the orogenic belt delamination during post-collision,the thinning of the lithosphere and the upwelling of the asthenosphere.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0602704)the National Natural Science Foundation of China(Grant No.U20B6001 and 91755211).
文摘The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion resulted in the transformation and disappearance of much geological record from the Qinling orogenic belt,and the tectonic evolution of this belt remains poorly constrained during the Triassic.Located in the northernmost margin of the South China Craton,the Sichuan Basin preserves the complete Triassic sedimentary succession,and can provide significant information for understanding the Triassic tectonic evolution of the Qinling orogenic belt.We present detrital zircon U-Pb dating,trace element and in situ Lu-Hf isotope data for the Middle Triassic Leikoupo Formation and the Late Triassic Xujiahe Formation samples from the eastern Sichuan Basin,South China.The detrital zircon U-Pb ages of the Leikoupo Formation show seven age clusters of 280-242,350-300,500-400,1000-800,2000-1750,2100-2000 and 2600-2400 Ma,while those of the Xujiahe Formation show five age clusters of 300-200,500-350,1050-950,2000-1750 and 2600-2400 Ma.Combined with published paleocurrent and paleogeographic data,the sediments of the Leikoupo Formation are interpreted to be sourced from the North China Craton,Yangtze Craton and North Qinling orogenic belt,and the potential main source regions of the Xujiahe Formation included the South and North Qinling orogenic belts.Provenance analysis indicates that the North Qinling orogenic belt was in inherited uplift and coeval denudation in the Middle Triassic.The proportion of the detritus formed in the South Qinling orogenic belt increases gradually from the Leikoupo to Xujiahe formations.This significant provenance change indicates that rapid tectonic uplift and extensive denudation of the South Qinling orogenic belt occurred in the early Late Triassic,which is related to the collision between the North China and South China cratons during the Triassic.