期刊文献+
共找到3,479篇文章
< 1 2 174 >
每页显示 20 50 100
Influence of Local Cation Order on Electronic Structure and Optical Properties of Cation-Disordered Semiconductor AgBiS_(2)
1
作者 Xiaoyu Wang Muhammad Faizan +5 位作者 Yuhao Fu Kun Zhou Yilin Zhang Xin He David J.Singh Lijun Zhang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第10期61-69,共9页
Site disorder exists in some practical semiconductors and can significantly impact their intrinsic properties both beneficially and detrimentally.However,the uncertain local order and structure pose a challenge for ex... Site disorder exists in some practical semiconductors and can significantly impact their intrinsic properties both beneficially and detrimentally.However,the uncertain local order and structure pose a challenge for experimental and theoretical research.Especially,it hinders the investigation of the effects of the diverse local atomic environments resulting from the site disorder.We employ the special quasi-random structure method to perform first-principles research on connection between local site disorder and electronic/optical properties,using cationdisordered AgBiS_(2)(rock salt phase)as an example.We predict that cation-disordered AgBiS_(2)has a bandgap ranging from 0.6 to 0.8 eV without spin-orbit coupling and that spin-orbit coupling reduces this by approximately 0.3 eV.We observe the effects of local structural features in the disordered lattice,such as the one-dimensional chain-like aggregation of cations that results in formation of doping energy bands near the band edges,formation and broadening of band-tail states,and the disturbance in the local electrostatic potential,which significantly reduces the bandgap and stability.The influence of these ordered features on the optical properties is confined to alterations in the bandgap and does not markedly affect the joint density of states or optical absorption.Our study provides a research roadmap for exploring the electronic structure of site-disordered semiconductor materials,suggests that the ordered chain-like aggregation of cations is an effective way to regulate the bandgap of AgBiS_(2),and provides insight into how variations in local order associated with processing can affect properties. 展开更多
关键词 stability structure ordered
原文传递
Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-lon Batteries
2
作者 Nibagani Naresh Suyoon Eom +4 位作者 Sang Jun Lee Su Hwan Jeong Ji-Won Jung Young Hwa Jung Joo-Hyung Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期100-111,共12页
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc... The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs. 展开更多
关键词 aqueous zinc-ion batteries BIRNESSITE buserite disordered structure phase transformation
在线阅读 下载PDF
Excellent dielectric response and microwave absorption in magnetic field-induced magnetic ordered structures
3
作者 Zheng Xiu Fei Pan +7 位作者 Kai Yao Haojie Jiang Xiao Wang Lixin Li Jingli Wang Xiaona Ma Yang Yang Wei Lu 《Journal of Materials Science & Technology》 2025年第5期241-251,共11页
Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes ... Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes to the formation of an electromagnetic(EM)coupling network,enhancing EM properties at a low FL.However,precisely controlling the length of 1D-MMFs to regulate permittivity at low FL poses a challenge.Herein,a novel magnetic field-assisted growth strategy was used to fabricate Co-based fibers with adjustable permittivity and aspect ratios.With a variety of FL changes,centimeter-level Co long fibers(Co-lf)consistently exhibited higher permittivity than Co particles and Co short fibers due to the enhancement of the effective EM coupling.The Co-lf exhibits excellent EMA performance(-54.85 dB,5.8 GHz)at 10 wt.%FL.Meanwhile,heterogeneous interfaces were introduced to increase the interfacial polarization through a fine phosphorylation design,resulting in elevated EMA performances(-51.50 dB,6.6 GHz)at 10 wt.%FL for Co_(2)P/Co long fibers.This study improves the orderliness of the particle arrangement by regulating the length of 1D-MMFs,which affects the behavior of electrons inside the fibers,providing a new perspective for improving the EMA properties of magnetic materials at a low FL. 展开更多
关键词 Cobalt micro-fiber ordered structure Hierarchical structure Electromagnetic wave absorption
原文传递
Ordered structures with Schottky heterojunction functional unit regulate immune response and osteogenesis
4
作者 Peng Yu Maofei Ran +7 位作者 Heying Ran Xuebin Yang Youzhun Fan Zhengao Wang Zhengnan Zhou Jinxia Zhai Zefeng Lin Chengyun Ning 《Journal of Materials Science & Technology》 2025年第10期276-287,共12页
Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration w... Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration when designing biomedical implants. In this research, ordered structures with Schottky heterojunction functional unit (OSSH) were constructed on titanium implant surfaces for bone regeneration regulation. The Schottky heterojunction functional unit is composed of periodically distributed titanium microdomain and titanium oxide microdomain with different carrier densities and surface potentials. The OSSH regulates the M2-type polarization of macrophages to a regenerative immune response by activating the PI3K-AKT-mTOR signal pathway and further promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells. This work provides fundamental insights into the biological effects driven by the Schottky heterojunction functional units that can electrically modulate osteogenesis. 展开更多
关键词 ordered structures with functional unit MACROPHAGE Implant OSTEOGENESIS Electric microenvironment
原文传递
Electronic structure and disorder effect of La_(3)Ni_(2)O_(7)superconductor
5
作者 Yuxin Wang Yi Zhang Kun Jiang 《Chinese Physics B》 2025年第4期63-69,共7页
Determining the electronic structure of La_(3)Ni_(2)O_(7)is an essential step towards uncovering its superconducting mechanism.It is widely believed that the bilayer apical oxygens play an important role in the bilaye... Determining the electronic structure of La_(3)Ni_(2)O_(7)is an essential step towards uncovering its superconducting mechanism.It is widely believed that the bilayer apical oxygens play an important role in the bilayer La_(3)Ni_(2)O_(7)electronic structure.Applying the hybrid exchange–correlation functionals,we obtain a more accurate electronic structure of La_(3)Ni_(2)O_(7)at its high-pressure phase,where the bonding dz2 band is below the Fermi level owing to the apical oxygen.The symmetry properties of this electronic structure and its corresponding tight-binding model are further analyzed.We find that the antisymmetric part is highly entangled,leading to a minimal nearly degenerate two-orbital model.Then,the apical oxygen vacancies effect is studied using the dynamical cluster approximation.This disorder effect strongly destroys the antisymmetric b Fermi surface,leading to the possible disappearance of superconductivity. 展开更多
关键词 electronic structure oxygen vacancies disorder dynamical cluster approximation bilayer superconducting nickelate
原文传递
Wave localization in randomly disordered periodic layered piezoelectric structures 被引量:11
6
作者 Fengming Li Yuesheng Wang +1 位作者 Chao Hu Wenhu Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期559-567,共9页
Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are c... Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency. 展开更多
关键词 disordered periodic layered piezoelectric structures Transfer matrix Lyapunov exponent Localization factor Localization length
在线阅读 下载PDF
First-principles investigation of B2 partial disordered structure,martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys 被引量:1
7
作者 Ziqi Guan Jing Bai +5 位作者 Jianglong Gu Xinzeng Liang Die Liu Xinjun Jiang Xiang Zhao Liang Zuo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第9期103-111,共9页
In this work,the B2 partial disordered structure of the austenitic parent phase,martensitic transformation,elastic and magnetic properties of the Ni8 Mn4+xTi4-x(x=0,1 and 2) Heusler alloys have been systematically inv... In this work,the B2 partial disordered structure of the austenitic parent phase,martensitic transformation,elastic and magnetic properties of the Ni8 Mn4+xTi4-x(x=0,1 and 2) Heusler alloys have been systematically investigated by the first-principles calculations.The preferential atomic occupation of B2 structure is one Ti atom exchange with the nearest neighboring Mn atom from the view of lowest energy principle.This disordered exchange sites(Mn-Ti) and the excess Mn atoms occupying the Ti sites(MnTi)could reduce the nearest Mn-Mn distance,resulting in the anti ferromagnetic state in the austenitic and martensitic phases of the alloys.The total magnetic moment of the alloy decreases with the increasing Mn content;it is ascribed to the antiferromagnetic magnetic moments of the excess Mn atoms.When x=0,the alloy does not undergo martensitic transformation since the austenite has absolute phase stability.The martensitic transformation will occur during cooling process for x=1 or 2,owing to the energy difference between the austenite and the martensite could provide the driving force for the phase transformation.The elastic properties of the cubic austenitic phase for the Ni2 MnTi alloy is calculated,and the results reveal the reason why Ni-Mn-Ti alloy has excellent mechanical properties.The origin of martensitic transformation and magnetic properties was discussed based on the electronic density of states. 展开更多
关键词 Ni-Mn-Ti First-principles calculations Martensitic transformation B2 partial disordered structure Elastic properties
原文传递
Factors in Work-Related Musculoskeletal Disorders in Dentists:A Structural Equation Model
8
作者 Shunhang Li Jian Li +6 位作者 Xin Xu Yushan Huang Yilin Zhang Xiaoshuang Xu Weizhen Guan Xiaoping Liu Jing Li 《Biomedical and Environmental Sciences》 2025年第5期639-643,共5页
Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervo... Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervous system due to occupational factors.In 2002,the International Labor Organization included musculoskeletal diseases in the International List of Occupational Diseases.China’s recently updated Classification and Catalog of Occupational Diseases has introduced two new categories of occupational illnesses,including occupational musculoskeletal disorders.WMSDs significantly impact the health and work of dentists,reducing their quality of life and causing economic losses.These disorders are multifactorial in nature,influenced by personal,psychosocial,biomechanical,and environmental factors.Dentists frequently maintain static or awkward postures during procedures,which leads to musculoskeletal strain and discomfort;additionally,long working hours contribute to psychological stress,further increasing the risk of WMSDs[2]. 展开更多
关键词 DENTISTS occupational factors classification catalog occupational diseases musculoskeletal disorders wmsds awkward postures work related musculoskeletal disorders structural equation model static postures
暂未订购
Circle structure and orderly hydrocarbon accumulation of whole petroleum system in a continental rifted basin:A case study of Kong-2 Member in Cangdong Sag,Bohai Bay Basin,China
9
作者 ZHAO Xianzheng PU Xiugang +8 位作者 LUO Qun XIA Guochao GUI Shiqi DONG Xiongying SHI Zhannan HAN Wenzhong ZHANG Wei WANG Shichen WEN Fan 《Petroleum Exploration and Development》 2025年第3期587-599,共13页
Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and... Guided by the fundamental principles of the whole petroleum system,the control of tectonism,sedimentation,and diagenesis on hydrocarbon accumulation in a rifted basin is studied using the data of petroleum geology and exploration of the second member of the Paleogene Kongdian Formation(Kong-2 Member)in the Cangdong Sag,Bohai Bay Basin,China.It is clarified that the circle structure and circle effects are the marked features of a continental fault petroliferous basin,and they govern the orderly distribution of conventional and unconventional hydrocarbons in the whole petroleum systems of the rifted basin.Tectonic circle zones control sedimentary circle zones,while sedimentary circle zones and diagenetic circle zones control the spatial distribution of favorable reservoirs,thereby determining the orderly distribution of hydrocarbon accumulations in various circles.A model for the integrated,systematic accumulation of conventional and unconventional hydrocarbons under a multi-circle structure of the whole petroleum system of continental rifted basin has been developed.It reveals that each sag of the rifted basin is an independent whole petroleum system and circle system,which encompasses multiple orderly circles of conventional and unconventional hydrocarbons controlled by the same source kitchen.From the outer circle to the middle circle and then to the inner circle,there is an orderly transition from structural and stratigraphic reservoirs,to lithological and structural-lithological reservoirs,and finally to tight oil/gas and shale oil/gas enrichment zones.The significant feature of the whole petroleum system is the orderly control of hydrocarbons by multi-circle stratigraphic coupling,with the integrated,orderly distribution of conventional and unconventional reserves being the inevitable result of the multi-layered interaction within the whole petroleum system.This concept of multi-circle stratigraphic coupling for the orderly,integrated accumulation of conventional and unconventional hydrocarbons has guided significant breakthroughs in the overall,three-dimensional exploration and shale oil exploration in the Cangdong Sag. 展开更多
关键词 circle structure whole petroleum system continental rifted basin Huanghua Depression Bohai Bay Basin Cangdong Sag Paleogene Kong-2 Member orderly hydrocarbon accumulation
在线阅读 下载PDF
Effects on dynamic characters of antenna structures in satellite induced by disordered parameters
10
作者 刘相秋 《High Technology Letters》 EI CAS 2009年第2期135-140,共6页
A simplified dynamic model of a dish antenna in satellite is established in this article.The modelcan be easily used to analyze the dynamic behaviour of the antenna structure.In terms of the simplifiedmodel,effects on... A simplified dynamic model of a dish antenna in satellite is established in this article.The modelcan be easily used to analyze the dynamic behaviour of the antenna structure.In terms of the simplifiedmodel,effects on dynamic characters due to the disorder of parameters are investigated in details.Thefrequencies calculated by the simplified model accord with those computed by ANSYS.Based on the modeshapes of disordered and perfect structure,the influence law and varying trend of dynamic characters ofantenna structures in satellites produced by stiffness and mass of antenna ribs,stiffness of antenna mem-branes and angles between adjacent ribs,are obtained.The analyses in the paper indicate that the effectsby disordered parameters can not be ignored in the dynamic analysis of such structures. 展开更多
关键词 antenna structures in satellite simplified dynamic model disordered parameters dynamic characters vibration mode localization
在线阅读 下载PDF
Structural Transition from Ordered to Disordered of BeZnO2 Alloy
11
作者 Li-Xia Qin Han-Pu Liang Rong-Li Jiang 《Chinese Physics Letters》 SCIE CAS CSCD 2020年第5期81-84,共4页
Employing Monte Carlo simulations based on the cluster expansion,the special quasi-random structures and first-principles calculations,we systematically investigate the structure transition of BeZnO2 alloys from the o... Employing Monte Carlo simulations based on the cluster expansion,the special quasi-random structures and first-principles calculations,we systematically investigate the structure transition of BeZnO2 alloys from the ordered to the disordered phase driven by the increased synthesis temperature,together with the solid-state phase diagram.It is found that by controlling the ordering parameter at the mixed sublattice,the band structure can vary continuously from a wide direct band gap of 4.61 eV for the fully ordered structure to a relatively narrow direct band gap of 3.60 eV for the fully disordered structure.Therefore,a better optical performance could be achieved simply by controlling the synthesis temperature,which determines the ordering parameters and thus the band gaps. 展开更多
关键词 structure. BeZnO ordered
原文传递
Microstructure and mechanical properties of Mg_(94)Zn_2Y_4 extruded alloy with long-period stacking ordered structure 被引量:4
12
作者 刘欢 薛烽 +2 位作者 白晶 周健 孙扬善 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3598-3603,共6页
The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO ... The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures. 展开更多
关键词 Mg94Zn2Y4 alloy long-period stacking ordered structure PRECIPITATION ageing tensile property
在线阅读 下载PDF
Hollow multi‑shelled structure materials for catalytic applications
13
作者 LIU Aoran LI Rui +3 位作者 WANG Zongyao SHANG Penghui WAN Jiawei WANG Dan 《无机化学学报》 北大核心 2025年第10期2039-2053,共15页
Hollow multi-shelled structure(HoMS)is the novel multifunctional structural system,which are con-structed with nanoparticles as structural units,featuring two or more shells,multiple interfaces,and numerous chan-nels ... Hollow multi-shelled structure(HoMS)is the novel multifunctional structural system,which are con-structed with nanoparticles as structural units,featuring two or more shells,multiple interfaces,and numerous chan-nels and demonstrating outstanding properties in energy conversion and mass transfer.In recent years,owing to the breakthroughs in synthetic methods,the diversity of composition and structure of HoMS has been greatly enriched,showing broad application prospects in energy,catalysis,environment and other fields.This review focuses on the research status of HoMS for catalytic applications.Firstly,the new synthesis method for HoMS,namely the sequen-tial templating approach,is introduced from both practical and theoretical perspectives.Then,it summarizes and discusses the structure-performance relationship between the shell structure and catalytic performance.The unique temporal-spatial ordering property of mass transport in HoMS and the major breakthroughs it brings in catalytic applications are discussed.Finally,it looks forward to the opportunities and challenges in the development of HoMS. 展开更多
关键词 hollow multi-shelled structure catalyst sequential templating approach temporal-spatial order mass transfer
在线阅读 下载PDF
Research Progress of Abrasive Groups Ordered Grinding Wheels
14
作者 Ye Guo Bing Chen +3 位作者 Zihao Liu Shiwei Sun Guoyue Liu Bing Guo 《Chinese Journal of Mechanical Engineering》 2025年第3期177-208,共32页
Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel prepara... Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel preparation process is complex and costly when using microstructured grinding wheels,abrasive groups ordered grinding wheels are widely investigated.However,there is a paucity of systematic analyses and comprehensive reviews focused on abrasive groups ordered grinding wheels.Therefore,this paper defines abrasive groups ordered grinding wheels and classifies them,based on their unique characteristics,into groups such as abrasive blocks ordered grinding wheel,fine grain structured grinding wheel,abrasive clusters ordered grinding wheel,and abrasive fibers ordered grinding wheel.We provide an overview of the latest advances in wheel structures,preparation methods,and abrasive selection for various types of abrasive groups ordered grinding wheels.Furthermore,we conduct a comparative analysis of the existing types,significant advantages,and challenges associated with the four types of abrasive groups ordered grinding wheels.Looking ahead,given the potential of abrasive groups ordered grinding wheels in reducing grinding force and temperature,we recommend further exploration of their application in combination with special processing techniques.This could pave the way for the development of machining processes that are more environmentally friendly,energy-efficient,and precise. 展开更多
关键词 Abrasive groups ordered grinding wheels Abrasive blocks Fine grain structured Abrasive clusters Abrasive fibers
在线阅读 下载PDF
Outstanding fatigue performance of Mg-Gd-Zn-Zr alloy enriched with SFs rather than LPSO Structure
15
作者 Yao Chen Fulin Liu +6 位作者 Yujuan Wu Liming Peng Lang Li Chao He Qiang Chen Yongjie Liu Qingyuan Wang 《Journal of Magnesium and Alloys》 2025年第1期90-100,共11页
Both solute-segregated long-period stacking ordered(LPSO)structure and stacking faults(SFs)are essential in strengthening rare-earth(RE)Mg alloys.Herein,LPSO-enriched Mg and SFs-enriched Mg are fabricated and comparab... Both solute-segregated long-period stacking ordered(LPSO)structure and stacking faults(SFs)are essential in strengthening rare-earth(RE)Mg alloys.Herein,LPSO-enriched Mg and SFs-enriched Mg are fabricated and comparably investigated for fatigue performances.During fatigue,the Mg nanolayers between LPSO lamellae or SFs act as the gliding channels of dislocations.However,SFs-enriched Mg exhibits outstanding fatigue strength due to solute strengthening within Mg nanolayers.Solute strengthening is assumed to contribute to the local accumulation of basal dislocations and the activation of non-basal dislocations.Dislocations are restricted locally and cannot glide long distances to specimen surfaces,which mitigates fatigue-induced extrusions and slip markings,ultimately leading to an increase in fatigue strength.These findings guide the development of RE-Mg alloys towards a synergy between high tensile and high fatigue performances. 展开更多
关键词 Long-period stacking ordered(LPSO)structure Stacking faults(SFS) Mg nanolayers Solute strengthening Fatigue performances
在线阅读 下载PDF
Long-period stacking ordered structures in Mg-3Cu-1Mn-2Zn-1Y damping alloy 被引量:2
16
作者 黄雪飞 张文征 +1 位作者 王敬丰 魏文文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1947-1953,共7页
14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu ... 14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu and Zn and thus they were quaternary phases. Sharp diffraction pattern of the 24R structure was obtained and the angle between and g10024R was measured to be 5.03°. During high resolution TEM observations, lattice fringes with two characteristic spacings were observed within the 24R structure. Based on the experimental results, 6H, 7H and three 8H are suggested as the building blocks of 18R, 14H and 24R structures, respectively. The 24R unit cell can be interpreted as the stacking of 8H building blocks in the same shear direction with a shear angle of about 5.03°. The imperfect 24R structures are in order or disorder arrangements of principal 8H and minor 6H blocks. This double-block structure model is also applicable to other reported defects in LPSO structures. 展开更多
关键词 magnesium alloys long-period stacking ordered structure TEM building block
在线阅读 下载PDF
The chemical environment and structural ordering in liquid Mg-Y-Zn system:An ab-initio molecular dynamics investigation of melt for the formation mechanism of LPSO structure
17
作者 Tangpeng Ma Jin Wang +5 位作者 Kaiming Cheng Chengwei Zhan Jixue Zhou Jingyu Qin Guochen Zhao Xinfang Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期815-824,共10页
In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular... In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level. 展开更多
关键词 Mg-Y-Zn Chemical environment structural ordering ab-initio molecular dynamics
在线阅读 下载PDF
Regulating Anderson localization with structural defect disorder
18
作者 Mouyang Cheng Haoxiang Chen Ji Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期102-107,共6页
Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the sam... Localization due to disorder has been one of the most intriguing theoretical concepts that evolved in condensed matter physics.Here,we expand the theory of localization by considering two types of disorders at the same time,namely,the original Anderson’s disorder and the structural defect disorder,which has been suggested to be a key component in recently discovered two-dimensional amorphous materials.While increasing the degree of both disorders could induce localization of wavefunction in real space,we find that a small degree of structural defect disorder can significantly enhance the localization.As the degree of structural defect disorder increases,localized states quickly appear within the extended phase to enter a broad crossover region with mixed phases.We establish two-dimensional diagrams for the wavefunction localization and conductivity to highlight the interplay between the two types of disorders.Our theoretical model provides a comprehensive understanding of localization in two-dimensional amorphous materials and highlights the promising tunability of their transport properties. 展开更多
关键词 Anderson localization structural defect disorder electronic transport properties
原文传递
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
19
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3D ordered electrode structural features Preparation technology Ultralow Pt loading
在线阅读 下载PDF
Guinier-Preston Zone,Quasicrystal and Long-period Stacking Ordered Structure in Mg-based Alloys,A Review 被引量:3
20
作者 Yongbo XU Daokui XU +1 位作者 Xiaohong SHAO En-hou HAN 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第3期217-231,共15页
Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys. A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates... Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys. A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates.Moreover, the type of precipitates varies with different alloying elements and heat treatments, which makes it quite difficult to understand the formation mechanism of the precipitates in Mg-based alloys in depth. Thus, it is very hard to give a systematical regularity in precipitation process for the Mg-based alloys. This review is mainly focused on the formation and microstructural evolution of the precipitates, as a hot topic for the past few years, including Guinier-Preston Zones, quasicrystals and long-period stacking ordered phases formed in a number of Mg-TM-RE alloy systems, where TM = Al, Zn, Zr and RE = Y,Gd, Hd, Ce and La. 展开更多
关键词 Guinier-Preston zone QUASICRYSTAL Long-period stacking ordered structure Mg-based alloy
原文传递
上一页 1 2 174 下一页 到第
使用帮助 返回顶部